
FOREWORD

DII COE I&RTS: Rev 3.0 July 1997 a

FOREWORD

This document will be reviewed and updated by the Defense Information Systems Agency
(DISA) as required to remain current with technology and program requirements. This
document supersedes all previous GCCS and DII Integration documents.

Changes to this document must be approved by DISA, but comments and
recommendations for change may be forwarded for review and incorporation to:

DISA DII COE Chief Engineer
Attention: Mr. Dan Test
Department of Defense
Defense Information Systems Agency
45335 Vintage Park Plaza
Sterling, VA 20166-6701

Office Tel: (703) 735-8736
email: testd@ncr.disa.mil

The following are registered trademarks of the Microsoft Corporation: Windows, Win32,
Win32s, Windows NT, Windows 95, and MS-DOS. TrueType is a registered trademark of
Apple Computer, Inc. SoundBlaster is a trademark of Creative Labs, Inc. OS/2 and PS/2
are registered trademarks of International Business Machines Corporation. Unicode is a
trademark of Unicode, Inc. PostScript is a trademark of Adobe Systems, Inc. UNIX is a
trademark of X/Open Company Ltd.

FOREWORD

b July 1997 DII COE I&RTS: Rev 3.0

This page is intentionally blank.

Executive Summary

DII COE I&RTS: Rev 3.0 July 1997 i

Executive Summary

This document describes the technical requirements for using the Defense Information
Infrastructure (DII) Common Operating Environment (COE) to build and integrate
systems. It provides implementation details that describe, from a software development
perspective, the following:

· the COE approach to software reuse,
· the COE runtime execution environment,
· the definition and requirements for achieving DII compliance,
· the process for automated software integration into the COE or into a COE-based

system, and
· the process for electronically submitting/retrieving software components to/from the

DII repository.

DII compliance is closely associated with interoperability, and for this reason systems are
increasingly being measured by the degree to which they meet requirements described in
this document. OSD has issued a directive that all new C4I systems and other systems
which interface to C4I systems shall be in compliance with the Joint Technical
Architecture (JTA). The JTA in turn mandates use of the DII COE. The JTA is being
expanded in scope to address weapons systems as well.

Background

The DII COE concept is best described as an architecture that is fully compliant with the
DOD Technical Architecture for Information Management (TAFIM), Volume 3, an
approach for building interoperable systems, a reference implementation containing a
collection of reusable software components, a software infrastructure for supporting
mission-area applications, and a set of guidelines, standards, and specifications. The
guidelines, standards, and specifications describe how to reuse existing software and how
to properly build new software so that integration is seamless and, to a large extent,
automated. The JTA replaces the standards guidance in the TAFIM as per OSD directive
dated 22 Aug 96. In the absence of a Joint Systems Architecture, the JTA currently
mandates the use of the DII COE (a fundamental JSA component) in Section 2.2. The DII
COE will be evolved as necessary to maintain compliance with mandated standards found
in future JTA updates.

The COE is primarily concerned with the executable environment of a system and is
specifically designed to be programming-language neutral. It does not state a preference of
one language over another, but leaves the selection of a programming language to higher-
level standards profile guidance and programmatic considerations. Any statements in the
I&RTS which appear to state or imply a preference for one language over another are
unintentional.

Executive Summary

ii July 1997 DII COE I&RTS: Rev 3.0

The COE is a “plug and play” open architecture. The current reference implementation is
designed around a client/server model. The COE is not a system; it is a foundation for
building an open system. Functionality is easily added to or removed from the target
system in small manageable units, called segments. Structuring the software into segments
is a powerful concept that allows considerable flexibility in configuring the system to meet
specific mission needs or to minimize hardware requirements for an operational site. Site
personnel perform field updates by replacing affected segments through use of a simple,
consistent, graphically oriented user interface.

The DII COE was initially based on work from the C4I arena, but it has been expanded to
encompass a range of other functional areas including logistics, transportation, base
support, personnel, health affairs, and finance. Three representative systems that use the
DII COE are the Global Command and Control System (GCCS), the Global Combat
Support System (GCSS), and the Electronic Commerce Processing Node (ECPN) system.
All three systems use the same infrastructure and integration approach, and the same COE
components for functions that are common between the systems. GCCS is a C4I system
with two main objectives: the replacement of the World-Wide Military Command and
Control System (WWMCCS) and the implementation of the C4I For the Warrior concept.
GCCS is already fielded at a number of operational CINCs and in calendar year 1996,
achieved the first objective of replacing all WWMCCS systems. GCSS is under
development and is targeted for the warfighting support functions (logistics,
transportation, etc.) to provide a system that is fully interoperable with the warfighter C4I
system. Implemented to its fullest potential, GCSS will provide both warfighter support to
include reachback from deployed commanders into the CONUS sustaining base
infrastructure, and cross-functional integration on a single platform. ECPN is also under
development and is to provide the foundation for paperless exchange of business
information, including funds transfer, using electronic media. A number of other programs
that are in the early stages of development have committed to using the DII COE, and
several programs have committed to migrating their existing systems to the DII COE.

The DII COE represents a departure from traditional development programs. It
emphasizes incremental development and fielding to reduce the time required to put new
functionality into the hands of the warrior, while not sacrificing quality nor incurring
unreasonable program risk or cost. This development approach is sometimes described as
a “build a little - test a little - field a lot” philosophy. It is a process of continually evolving
a stable baseline to take advantage of new technologies as they mature and to introduce
new capabilities. But the changes are done one step at a time so that the warfighters
always have a stable baseline product while changes between successive releases are
perceived as slight. This approach allows program managers the option of taking
advantage of recently developed functions to rapidly introduce new capabilities to the
field, or to synchronize with COE development at various checkpoints for those
environments where incremental upgrades are not readily acceptable to the customer
community.

DISA maintains the COE software and software from its own COE-based systems (e.g.,
GCCS, GCSS, ECPN) in an online configuration management repository called SDMS
(Software Distribution Management System). This approach decreases the development

Executive Summary

DII COE I&RTS: Rev 3.0 July 1997 iii

cycle by allowing developers to receive software updates, or to submit new software
segments, electronically. With appropriate security measures, installation costs are also
reduced because operational platforms may be updated electronically across SIPRNET or
other LAN networks.

New Features

This new release represents an upgrade to the previous version of this document, the DII
COE Integration and Runtime Specification (I&RTS), version 2.0. It is intended to
amplify and clarify sections that were previously unclear or incomplete, and to present a
set of new capabilities. This new version is completely backwards compatible with the
previous release of this document. There is no resultant reduction in the compliance of
systems that have already been migrated under the previous version of this document,
although Appendix B has been reworked to make compliance checking easier.

It should also be noted that the I&RTS document contents and version number are entirely
independent of the DII COE software release contents and version number. There is no
direct correspondence between a particular version number of the I&RTS and the
capabilities available in a version of the DII COE with the same version number. The
I&RTS document describes the technical requirements for using the DII COE and
therefore addresses the current and future capabilities of the DII COE. Portions of the
I&RTS are always ahead of the DII COE software, addressing future capabilities and
technological advances, so that developers can see where the DII COE is headed.

Several new capabilities are incorporated into this release including:

· Guidance for using DCE (Distributed Computing Environment)
· Extensions for World-Wide-Web (WWW) applications within the COE
· Database application support through the Shared Data Environment (SHADE)
· Inclusion of an NT-based COE for PCs
· Additional tools for managing large-scale LAN environments.

Conclusion

The principles described in this document are not unique to DISA programs. They can be
readily applied to many application areas. The specific software components selected for
inclusion in the COE determine the mission area that the COE can address. The concepts
herein represent the culmination of open systems evolutionary development from both
industry and government. Most notably, the Army Common Software (CS) and the Navy
Joint Maritime Command Information System (JMCIS) COE efforts have greatly
influenced DII COE development.

The DII COE architecture is an innovative framework for designing and building military
systems. Because it reuses software contributed by mature programs, it utilizes field-
proven software for common warrior functions. The engineering procedures for adding
new capabilities and integrating systems are mature, and have been used for several Navy
JMCIS releases as well as in all production GCCS releases. The end result is a strategy for

Executive Summary

iv July 1997 DII COE I&RTS: Rev 3.0

fielding systems with increased interoperability, reduced development time, increased
operational capability, minimized technical obsolescence, minimal training requirements,
and minimized life-cycle costs.

Introduction

DII COE I&RTS: Rev 3.0 July 1997 1-1

1. Introduction

The Command, Control, Communication, Computer, and Intelligence (C4I) For the
Warrior (C4IFTW) vision has been stated as follows:

The Warrior needs a fused, real-time, true-picture of the battlespace and
the ability to order, respond, and coordinate vertically and horizontally to
the degree necessary to prosecute the mission in that battlespace.

This broad visionary statement demonstrates that an unprecedented degree of integration
and interoperability is required of Department of Defense (DOD) systems, both for legacy
systems and for systems that are under construction. The Defense Information
Infrastructure (DII) Common Operating Environment (COE) is the key to achieving this
vision.

The DII COE1 originated with a simple observation about command and control systems:
certain functions (mapping, track management, communication interfaces, etc.) are so
fundamental that they are required for virtually every command and control system. Yet
these functions are built over and over again in incompatible ways even when the
requirements are the same, or vary only slightly, between systems. If these common
functions could be extracted, implemented as a set of extensible low-level building blocks,
and made readily available to system designers, development schedules could be
accelerated and substantial savings could be achieved through software reuse. Moreover,
interoperability would be significantly improved because common software is used across
systems for common functions, and the functional capability only needs to be built
correctly once rather than over and over again for each project.

This observation led to the development of the DII COE. Although its roots are in the C4I
arena, the DII COE and its principles are not unique to C4I. The DII COE has been
expanded to encompass a range of other functional areas including logistics,
transportation, base support, personnel, health affairs, and finance. All new Defense
Information Systems Agency (DISA) systems are being built using the DII COE while
existing DISA systems are being migrated to use the DII COE. The Office of the
Secretary of Defense (OSD) has recently issued a directive2 that requires JTA compliance
and, indirectly, use the DII COE.

1 The acronyms “DII COE” and “COE” are used interchangeably throughout this document. Other COEs
exist (such as the Joint Maritime Information System (JMCIS) COE) which are very similar in scope or
implementation with the DII COE. To avoid confusion, unless otherwise indicated, “COE” always refers
to the DISA DII COE.
2 OSD Directive dated 22 August 1996 (Subject: Implementation of the DOD Joint Technical
Architecture). The directive states that all new C4I systems and other systems which interface to C4I
systems shall be in compliance with the JTA. The JTA in turn mandates use of the DII COE. The JTA is
being expanded in scope to address weapons systems as well.

Introduction

1-2 July 1997 DII COE I&RTS: Rev 3.0

A significant aspect of the COE challenge is to strategically position the architecture so as
to be able to take advantage of technological advances. At the same time, the system must
not sacrifice quality, stability, or functionality already in the hands of the warrior. In
keeping with current DOD trends, the COE emphasizes use of commercial products and
standards where applicable to leverage investments made by commercial industry.

A Brief History of the DII COE

DII COE I&RTS: Rev 3.0 July 1997 1-3

1.1 A Brief History of the DII COE

Initial DII COE development was driven by a near-term requirement to build a suitable
WWMCCS replacement. To achieve the near-term WWMCCS replacement objective,
technical experts and program managers from the Services, intelligence community,
Defense Mapping Agency (DMA), and other interested agencies met for several months
beginning in the fall of 1993. Participants proposed candidate systems as a possible
starting point for a COE architecture or as a suitable candidate for providing capabilities
to meet WWMCCS replacement requirements. None of the candidate systems met all
requirements, but it was clear that a combination of the “best” from several systems could
produce a near-term system that would be suitable for WWMCCS replacement.
Moreover, an infrastructure could be put into place and a migration strategy defined to
preserve legacy systems until migration to the intended architecture could be realized.

The cornerstone architectural concept jointly developed during that series of meetings was
the GCCS COE. This initial COE was limited in scope to address the immediate C4I
problem (i.e., WWMCCS replacement), but its principles, structure, and foundation
deliberately went far beyond just the C4I mission domain. The GCCS COE was composed
of software contributed from candidate systems evaluated by this original Joint
engineering team.

An initial proof-of-concept system, GCCS 1.0, was installed in early 1994 at one site to
validate the approach and to receive early feedback. GCCS 1.1 followed in the summer of
1994 and was the first attempt to integrate software from Service programs as initial
GCCS COE components. GCCS 1.1 included mission applications from other programs
operating in a “federated” mode. That is, the mission applications were integrated together
so as to be able to run on the same hardware without interfering with each other, but not
yet able to effectively share data between applications. GCCS 1.1 was installed and tested
at beta sites and used at certain operational sites to monitor events during the 1994 Haiti
crisis. GCCS 2.0 fielding began in early 1995 at a number of operational sites. GCCS 2.1
was fielded in mid-1995 and by mid-1996 had successfully replaced WWMCCS. A
prototype version of GCCS 2.2 was the basis for Joint Warrior Interoperability
Demonstration (JWID) 95 and a refinement of it was the basis for JWID 96. Another
GCCS 2.2 enhancement was placed in theater to support Bosnia operations and for
contingency planning when tensions in the Gulf area increased in mid-1996.

In mid-1995 technical experts met under DISA guidance to expand the GCCS COE into
the DII COE. The result is a COE that contains all of the original GCCS COE
functionality and that is backwards compatible. The DII COE was expanded to address
other mission domains. Much of the original software has been updated to take advantage
of further technological advances and Commercial Off-the-Shelf (COTS) software has
replaced some of the original Government Off-the-Shelf (GOTS) components. From this
historical perspective, the GCCS COE can be viewed as a subset of the much larger DII
COE. Although GCCS succeeded in replacing the aged WWMCCS, it is important to
realize that GCCS is far more than just a WWMCCS replacement.

A Brief History of the DII COE

1-4 July 1997 DII COE I&RTS: Rev 3.0

The DII COE has its roots in command and control, but the principles and implementation
described in this document are not unique to, nor limited to, command and control or
logistics applications but are readily applicable to many other application areas. The
specific software components selected for inclusion in the COE determine the mission
areas that the COE can address.

Backwards compatibility is a fundamental tenet of the COE and significant effort is
expended to preserve legacy investments. Systems which migrate to the DII COE now are
protected by backwards compatibility as future COE versions are released. Upgrading
from one COE version to the next is generally no more difficult than upgrading from one
COTS product version to the next.

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 1-5

1.2 The DII COE Concept

The DII COE concept is a new approach that is much broader in scope than software
reuse. Most software reuse approaches to date have proven less than satisfactory. Reuse
approaches have generally emphasized the development of a large software repository
from which designers may pick and choose modules or elect to rebuild modules from
scratch. It is not sufficient to have a large repository, and too much freedom of choice
leads to interoperability problems and duplication of effort. This rapidly negates the
advantages of software reuse.

Software reuse strategies have also ignored the importance of data reuse. The approach
has traditionally been to encapsulate data into a relational database from which
applications may retrieve the data according to their own view (i.e., schema). While this
approach was a tremendous advance, it fell short of the goal of providing truly
interoperable systems in the Joint arena. What is required is an approach that promotes
data sharing within systems and between systems. The approach must also recognize and
resolve the issues of duplicative data, inconsistencies in the data, and data replication.
SHADE is the data reuse strategy for the DII COE.

The DII COE emphasizes both software reuse and data reuse and interoperability for both
data and software. But its principles are more far reaching and innovative. The COE
concept encompasses:

· an architecture and approach for building interoperable systems,
· an environment for sharing data between applications and systems,
· an infrastructure for supporting mission-area applications,
· a rigorous definition of the runtime execution environment,
· a reference implementation on which systems can be built,
· a collection of reusable software components and data,
· a rigorous set of requirements for achieving DII3 compliance,
· an automated toolset for enforcing COE principles and measuring DII compliance,
· an automated process for software integration,
· an approach and methodology for software and data reuse,
· a set of Application Program Interfaces (APIs) for accessing COE components, and
· an electronic process for submitting/retrieving software and data to/from the DII

repository.

This document is an engineering specification that describes how modules must interact in
the target system. System architects and software developers retain freedom in building
the system, but runtime environmental conflicts and data conflicts are identified and
resolved through automated tools that enforce COE principles. An important side effect is
that traditional integration tasks largely become the responsibility of the developer.

3 The term “DII compliance” is preferred instead of “COE compliance” and is used throughout the
I&RTS. The compliance concept and approach has not changed, but compliance is measured for segments
within the COE as well as mission-application segments that lie outside the COE. Therefore, “DII
compliance” is more descriptive and correct than “COE compliance.”

The DII COE Concept

1-6 July 1997 DII COE I&RTS: Rev 3.0

Developers are required to integrate and test their software with the COE prior to
delivering it to the government. This simplifies integration because those who best
understand the software design (the original developers) perform it, it reduces the cost
because integration is performed earlier and at a lower level in the process, and it allows
the government to concentrate on validation instead of integration.

The COE must be understood as a multi-faceted concept. Understanding how the many
facets interact is important to appreciate the scope and power of the DII COE and to
avoid confusion in understanding COE material. The next subsection deals with four
specific facets in more detail:

· the COE as a system foundation,
· the COE as an architecture,
· the COE as a reference implementation, and
· the COE as an implementation strategy.

Failure to understand these facets will lead to confusion and non-compliant systems.

1.2.1 The DII COE as a System Foundation

The DII COE is not a system; it is a foundation for building systems. Figure 1-1 is a
simplified diagram that shows how the DII COE serves as a foundation for building
multiple systems. Details such as specific COE components, databases, and the internal
structure of the COE have been omitted for clarity. Chapter 2 provides this level of
information and describes the COE in much more detail. The purpose of Figure 1-1 is to
introduce the concept.

The shaded box in Figure 1-1 shows two types of reusable software: the operating system
and COE components. For the present discussion, it is sufficient to note that COE
components are accessed through APIs and that the COE components form the
architectural backbone of the target system. The API is the means through which a system
permits a programmer to develop applications through interaction with the underlying
COE. Standards (POSIX [Portable Operating System for Information Exchange] in the
diagram) and specifications (TAFIM [Technical Architecture Framework for Information
Management], JTA [Joint Technical Architecture], I&RTS [Integration and Runtime
Specification], and User Interface Specification [UIS] in the diagram) dictate how COE
components are to be built and how external components must be built to be compliant
with the COE architecture.

Building a target system includes combining COE components with mission-specific
software. The COE infrastructure manages the flow of data through the system, both
internally and externally. Mission-specific software is mostly concerned with requesting
data from the COE and then presenting it in a form that is most meaningful to the operator
(e.g., as a pie chart, in tabular form, as a graph). The COE provides the necessary
primitives for such data whether stored locally or remotely across a Local Area Network
(LAN) or Wide Area Network (WAN). This frees the system designer to concentrate on

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 1-7

meaningful data presentation and not on the mechanics of data manipulation, network
communications, database storage, etc.

There is only one COE regardless of the target system. The COE is a set of building
blocks. System designers select those building blocks (e.g., COE components) required
for their mission application, while excluding building blocks that are not required. Each
derived system uses the same set of APIs to access common COE components, the same
approach to integration, and the same set of tools for enforcing COE principles. For
common functions (e.g., communications interfaces, dataflow management), each target
system uses precisely the same COE software components. Compliant systems do not
implement their own versions of algorithms within the COE because this will rapidly lead
to interoperability problems as algorithms are interpreted differently or because systems
fail to upgrade algorithms at the same time. This approach to software reuse significantly
reduces interoperability problems because if the same software is used, it is not possible to
have two systems that interpret or implement standards differently.

GCCS GCSS ECPN Other

COE Based Systems

R
eu

sa
bl

e
So

ft
w

ar
e

H/W Platform

Standard Application Program Interfaces

COE Components

Operating System Services

DII COE

Standards
•I&RTS
•UIS
•POSIX
•TAFIM
•JTA

Figure 1-1: DII COE and COE-Based Systems

The DII COE Concept

1-8 July 1997 DII COE I&RTS: Rev 3.0

1.2.2 The DII COE as an Architecture

The DII COE is a “plug and play” open architecture designed around a client/server
model. Functionality is easily added to or removed from the target system in small
manageable units called segments. Segments are defined in terms of functions that are
meaningful to operators, not in terms of internal software structure. Structuring the system
into segments in this manner allows flexibility in configuring the system to meet specific
mission needs or to minimize hardware requirements for an operational site. Site personnel
perform field updates by replacing affected segments through use of a simple, consistent,
graphically-oriented user interface.

The DII COE model is analogous to the Microsoft Windows® paradigm. The idea is to
provide a standard environment, a set of standard off-the-shelf components, and a set of
programming standards that describe how to add new functionality to the environment.
The Windows paradigm is one of “federation of systems” in that properly designed
applications can coexist and operate in the same environment. But simple coexistence is
not enough. It must be possible for applications to share data. The DII COE extends the
Windows paradigm to allow for true “integration of systems” in that mission applications
share data at the server level.

Federation versus integration is an important architectural distinction. However,
integration is not possible without strict standards that describe how to properly build
components to add to the system. This applies equally to software functions and data. This
document and other related documents detail the technical requirements for a well-
behaved, DII-compliant application. The COE provides automated tools to measure
compliance and to pinpoint problem areas. A useful side effect of the tools and procedures
is that software integration is largely an automated process, thus significantly reducing
development time while automatically detecting potential integration and runtime problem
areas.

More precisely, to a developer the DII COE includes each of the following:

· An Architecture4: A precisely defined TAFIM and JTA-compliant, client/server
architecture for how system components will interact and fit together and a definition
of the system-level interface to COE components.

· A Runtime Environment: A standard runtime operating environment that includes

“look and feel,” operating system, and windowing environment standards. Since no
single runtime environment is possible in practice, the COE architecture provides
facilities for a developer to extend the environment in such a way as to not conflict
with other developers.

4 The JTA describes three types of architectures: operational, technical, and system. The DII COE is
relevant to all three types but does not and cannot provide a complete architectural definition for all three
types. For example, the operational architecture also includes consideration of the command echelon and
reporting structure. This is dictated by policy and is thus outside the scope of the COE. The DII COE is
limited to addressing those aspects of an architecture that can be implemented in hardware and software
as dictated by higher level standards, concept of operations, and service doctrine.

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 1-9

· A Data Environment: A standard data environment that prescribes the rules whereby
applications can share data with other applications.

· A Reference Implementation: A clearly defined set of already implemented, reusable

functions. A set of reusable software and data is a cornerstone of the DII COE
product.

· A Set of APIs: A collection of interfaces for accessing COE components. Thus, the

COE is a set of building blocks in the same sense that X Windows and Motif are
building blocks for creating an application's Graphical User Interface (GUI).

· A Set of Standards and Specifications: A set of rules that describe how to use the

COE, how to construct segments, how to create a GUI, etc.

· A Development Methodology: A process for developing, integrating, and distributing

the system and a process for sharing components with other developers. The COE
emphasizes and encourages incremental development that has the advantage of quickly
producing usable functionality.

1.2.3 The DII COE as a Reference Implementation

The COE necessarily includes an implementation of the components defined to be in the
COE. The reference implementation is the key to reusability and interoperability. Use of
the reference implementation provided is required to assure interoperability and is
therefore a fundamental requirement for DII compliance. The reference implementation
may change over time to take advantage of new technologies or to fix problem reports,
but incremental improvements are introduced while preserving backwards compatibility.

The term reference implementation should be properly understood in the context of the
DII COE. It means that a single body of code has been used as a starting point for
implementing the COE on a specific hardware platform and operating system. The only
differences in the actual executable binary code are those that arise purely as a result of
porting from one platform to another. The algorithms and the way the algorithms are
implemented are identical from platform to platform.

1.2.4 The DII COE as an Implementation Strategy

The COE is also an evolutionary acquisition and implementation strategy. This represents
a departure from traditional development programs. It emphasizes incremental
development and fielding to reduce the time required to put new functionality into the
hands of the warrior, while not sacrificing quality nor incurring unreasonable program risk
or cost. This approach is sometimes described as a “build a little - test a little - field a lot”
philosophy. It is a process of continually evolving a stable baseline to take advantage of
new technologies as they mature and to introduce new capabilities. But the changes are
done one step at a time so that the warfighters always have a stable baseline product while
changes between successive releases are perceived as slight. Evolutionary development

The DII COE Concept

1-10 July 1997 DII COE I&RTS: Rev 3.0

has become a practical necessity for many development programs because the traditional
development cycle time is longer than the technical obsolescence cycle time. This
approach allows program managers the option of taking advantage of recently developed
functions to rapidly introduce new capabilities to the field, or of synchronizing with COE
development at various points for those situations where incremental upgrades are not
readily acceptable to the customer community.

The COE implementation strategy is carefully structured to protect functionality contained
in legacy systems so that over time they can migrate to full COE utilization. Legacy
systems must use only “public” APIs and migrate away from use of “private” APIs. Public
APIs are those interfaces to the COE that will be supported for the life cycle of the COE.
Private APIs are those interfaces that are supported for a short period of time to allow
legacy systems to migrate from unsanctioned to sanctioned APIs. All new development is
required to use only public APIs and use of any other APIs results in a non-DII compliant
segment.

From the perspective of a system developer, whether developing a new application or
migrating an existing one, the COE is an open client/server architecture that offers a
collection of services and already-built modules for mission applications. Thus, the
developer's task is to assemble and customize5 existing components from the COE while
developing only those unique components that are peculiar to particular mission’s
requirements. These additional mission-unique components must still adhere to the
standards specified in the JTA and this document. In many if not most cases, this amounts
to adding new “pull-down menu entries and icons.”

5 Customization is achieved in two ways: by omitting COE components that are not required and by
configuring operational characteristics of the selected COE components. Customization does not mean the
ability to change the functional operation of the component (a) outside the configurable items provided by
the component or (b) outside the facilities provided by the component’s APIs. When customizing the COE
is discussed in this document, it must be understood in this context as a way of tailoring the COE to meet
a specific mission need.

Lessons Learned

DII COE I&RTS: Rev 3.0 July 1997 1-11

1.3 Lessons Learned

The COE as the embodiment of an architectural concept offers the opportunity to leverage
a mature, proven, field tested software base for a wide variety of applications for the
services, agencies, and Joint community. As budgets shrink and as budgetary priorities
shift, program managers require the ability to continue to respond rapidly with systems
that satisfy the information needs of United States and Allied Armed Forces. The COE
implementation strategy is a significant advancement in fulfilling this ongoing need.

Examination of state-of-the-art development in light of these realities results in a set of
fundamental tenets that greatly influence the history, future, and direction of the DII COE.
An explanation of these tenets is useful in understanding the COE as a whole.

· Pre-COE practices lead to development and redevelopment of the same functionality
across systems. Redevelopment is frequently necessary because of technological
changes as algorithms are improved or as hardware becomes faster and cheaper.
However, development cost tends to be high due to a lack of coordination between
programs that share common requirements.

· Duplication of functionality within the same system is more expensive than avoiding

duplication. Lack of coordination between program developers is a fundamental cause
for duplicative functions, but an additional factor is that reuse libraries are not
commonly available. The impact of duplication is more than just program costs. When
functionality is duplicated, system users are often given conflicting information even in
the presence of identical data because designers took slightly different approaches to
solving the same problems or made slightly different assumptions.

· Interoperability is not achievable through “paper” standards alone.6 Standards are

necessary, but not sufficient,7 to guarantee interoperability. Interoperability problems
are generally not caused by the standards chosen but by differing or incorrect
interpretations of standards. System designers often choose different standards with
which to comply, but even when the standards are the same, different interpretations
of the standards can greatly change the way the resulting system operates. The COE
emphasizes use of industry and government standards, but relies even more on
automated ways of measuring and evaluating compliance, and thus quantitatively
evaluating program risk. The only practical way to achieve interoperability is to use
exactly the same software, written to appropriate standards, for common functions
across applications. For example, the COE contains a common tactical track correlator
to ensure that all users see the same tactical picture. The answer produced by the

6 This statement is not meant to minimize the importance of standards, but to state that they alone are not
sufficient to solve interoperability problems. The situation would be far more desperate in the absence of
standards.
7 The solution provided by the COE is to define specifications and a reference implementation of a
standard. For example, in the user interface area, Motif is the standard selected for UNIX platforms and
the DII User Interface Specification is the specification written to be compliant with Motif, but tailored
for the particular mission domain.

Lessons Learned

1-12 July 1997 DII COE I&RTS: Rev 3.0

correlator may be incorrect but a problem correction in one place then becomes
effective for all users.

· Pre-COE practices lead to exponential growth in testing and associated development

costs. Lack of commonality and modularity in system building blocks means that there
is much duplication of effort in testing basic functionality and testing in one section of
a system is often tightly coupled to testing in another section. This complicates and
extends the certification process. Configuration management, system integration, and
long-term maintenance are also more complex and costly when there is a lack of
commonality and modularity in system building blocks.

· The importance of training is usually underestimated and the magnitude of the

training problem is increasing. An operator is often expected to use multiple systems
which behave completely differently, are equally complex with their own subtleties,
and which give slightly different answers. Operator turnover is rapidly reaching the
point where the time it takes to train an operator is a significant portion of the time
that the operator is assigned to his current tour of duty. Training is greatly reduced by
a consistent “look and feel” and by the ability to present to the operator only those
functions useful for the task at hand.

· Don't reinvent the wheel. If a component already exists, it should probably be utilized

even if the component is not the optimum solution. Almost any module can be
improved but that is rarely the issue. Reuse of existing and proven software allows
focus of attention on mission uniqueness. Rather than concentrating scarce
development resources on recreating building blocks, the resources can be more
appropriately applied to configuration and development of functionality that is not
already available.

· Utilize existing commercial standards, specifications, and products whenever

feasible. The commercial marketplace generally moves at a faster pace than the
military marketplace and advancements are generally available at a more rapid rate.
Use of commercial products has several advantages. Using already built items lowers
production costs. The probability of product enhancements is increased because the
marketplace is larger. The probability of standardization is increased because a larger
customer base drives it.

Requirements and Objectives

DII COE I&RTS: Rev 3.0 July 1997 1-13

1.4 Requirements and Objectives

The following requirements apply to the DII COE:

· The DII COE will be fully compliant with the JTA8. Standards defined within the JTA
promote an open systems architecture, the benefits of which are assumed to be well
known and generally accepted.

· The DII COE is intended to be hardware independent and operate on a range of open

systems platforms running under standards-based operating systems. Program-driven
requirements, associated testing costs, and funding will dictate which specific
hardware platforms are given priority.

· Non-developmental items (NDIs), including both COTS and GOTS products, are the

preferred implementation approach.

· The DII COE is programming-language neutral. It does not state a preference of one
language over another, but leaves the selection of a programming language to higher-
level standards profile guidance and programmatic considerations. Any statements in
the I&RTS which appear to state or imply a preference for one language over another
are unintentional.

COE development is driven by C4IFTW requirements as articulated by the services
through the appropriate DISA Configuration Control Board (CCB) process. Development
priorities are established by the CCB Chair and given to the DII COE Chief Engineer for
implementation.

The broad program drivers for the DII COE lead to a number of program objectives that
include those stated in the TAFIM, Volume 2:

1. Commonality: Develop a common core of software that will form the foundation for
Joint systems, initially for C4I and logistics systems.

2. Reusability: Develop a common core of software that is highly reusable to leverage

the investment already made in software development across the services and agencies.

3. Standardization: Reduce program development costs through adherence to industry

standards. This includes use of commercially available software components whenever
possible.

4. Engineering Base: Through standardization and an open architecture, establish a

large base of trained software/systems engineers.

8 JTA replaces some of the standards guidance in the TAFIM as per OSD directive (Subject:
Implementation of the DOD Joint Technical Architecture) dated 22 August 1996. It replaces those
standards for service areas defined within the JTA. For those service areas not included in the JTA,
guidance in Volume 7 of the TAFIM is to be followed.

Requirements and Objectives

1-14 July 1997 DII COE I&RTS: Rev 3.0

5. Training: Reduce operator training costs and improve operator productivity through

enforcement of a uniform human-machine interface, commonality of training
documentation, and a consistent “look and feel.”

6. Interoperability: Increase interoperability through common software and consistent

system operation.

7. Scalability: Through use of the segment concept and the COE architectural

infrastructure, improve system scalability so that COE-based systems will operate with
the minimum resources required.

8. Portability: Increase portability through use of open systems concepts and standards.

This also promotes vendor independence for both hardware and software.

9. Security: Improve system security to the extent possible to protect the system from

deliberate attack and prevent unauthorized access to data and applications.

10. Testing: Reduce testing costs because common software can be tested and validated

once and then applied to many applications.

Document Scope

DII COE I&RTS: Rev 3.0 July 1997 1-15

1.5 Document Scope

This document describes the technical requirements for building and integrating software
components on top of the DII COE. It provides implementation details that describe, from
a software development perspective, the following:

· the Common Operating Environment (COE) approach to software reuse,
· the runtime execution environment,
· the Shared Data Environment (SHADE),
· the requirements for DII compliance,
· how to structure components to automate software integration, and
· how to electronically submit/retrieve software components to/from the software

repository.

Applicable Documents, Standards, and Specifications

1-16 July 1997 DII COE I&RTS: Rev 3.0

1.6 Applicable Documents, Standards, and Specifications

This document is one in a series of related documents that define development
requirements, system architecture, engineering tools, and implementation techniques.
Many of the documents cited are available on the World-Wide-Web (WWW), or contact
the DISA Configuration Management (CM) office for information on how to obtain the
desired documents.

Because the COE and COE-based systems are ongoing programs, enhancements and
additional features are developed on a regular basis. Documentation updates are regularly
released for each of the documents listed here. Be sure to always refer to the latest version
for the documents listed below, and be aware that many of the documents are being
modified and extended to address DII COE-based systems, not just GCCS or GCSS.

1. Architectural Design Document for the Defense Information Infrastructure (DII)
Common Operating Environment (COE), January 1996, DISA Center for
Computer Systems Engineering. This document is the definitive high-level technical
description of the COE. It documents the architectural design produced by the DISA
COE Design Working Group. It is useful for understanding how the client/server
model has been implemented within the DII COE.

2. C4ISR Architecture Framework, CISA-0000-104-96, Version 1.0, 7 June 1996,

C4ISR Integration Task Force (ITF) Integrated Architectures Panel. This
document presents an innovative definition of levels of interoperability. The DII COE
adopts these levels of interoperability and maps DII compliance to interoperability
levels.

3. Defense Information Infrastructure (DII) Common Operating Environment (COE)

Version 3.0 Baseline Specifications, 31 October 1996, DISA. This document
describes the detailed contents of each COE release and is updated with each
subsequent release. It includes the name and version of each segment in the COE as
well as COTS products, their version, and applicable patches.

4. Defense Information Infrastructure (DII) Common Operating Environment (COE)

System Requirements Specification, Draft, 1996, Institute for Defense Analysis.
Service and Agency requirements for a COE are defined in this document. It is a living
document that is updated as necessary to reflect ongoing requirements collection.

5. Defense Information Infrastructure Software Quality Compliance Plan, Draft,

1 January 1996, DISA. This document describes a plan for evaluating COE segments
from a software quality perspective. The plan includes static analysis of segment
source code to measure complexity, maintainability, risk, and other standard software
metrics.

6. Department of Defense Joint Technical Architecture, Final Coordination Draft 1.0,

22 August 1996, Joint Technical Architecture Working Group. The JTA has been
mandated by OSD directive for “... all emerging systems and systems upgrades. The

Applicable Documents, Standards, and Specifications

DII COE I&RTS: Rev 3.0 July 1997 1-17

JTA applies to all C4I systems and the interfaces of other key assets (e.g., weapons
systems, sensors, office automation systems, etc.) with C4I systems. The JTA also
applies to C4I Advanced Concept Technology Demonstrations and other activities that
lead directly to the fielding of operational C4I capabilities.” The JTA stipulates DII
compliance as part of its requirements. It also “... replaces the standards guidance in
the Technical Architecture Framework for Information (TAFIM) currently cited in
DOD Regulation 5000.2-R.”

7. Department of Defense Technical Architecture Framework for Information

Management, Volumes 1-8, Version 3.0, 2 January 1997, DISA Center for
Architecture. This multi-volume document defines a standards profile and the DOD
Technical Reference Manual (TRM) for information management systems. This
document set also presents a high-level technical architecture that is useful for
classifying levels within a system’s infrastructure. The TRM distinguishes between the
hardware platform, hardware-specific services, supporting infrastructure services, and
mission applications.

8. Information Technology - Portable Operating System Interface for Computer

Environments (POSIX) - Part 1: System Application Program Interface (API) [C
Language], ISO 9945-1, 1990; Information Technology - Portable Operating System
Interface for Computer Environments (POSIX) - Part 2: Shell and Utilities,
ISO 9945-2, 1993. The POSIX documents are an ongoing standardization effort that
is attempting to define a common set of low-level functions, especially at the operating
system level, across all hardware platforms and operating systems.

9. User Interface Specification for the Defense Information Infrastructure (DII),

Version 2.0, 1 April 1996, DISA. This document, sometimes called the DII Style
Guide, defines the “look and feel” of the user interface for COE-based systems. The
User Interface Specification provides specifications for applications using Motif and
Windows GUIs; a future version of the document will include Windows NT and Web-
based applications.

Document Structure

1-18 July 1997 DII COE I&RTS: Rev 3.0

1.7 Document Structure

This document is structured to correspond to the typical phases in a development cycle,
beginning with how a developer builds a segment, submits it to the government, and then
how it is fielded to an operational site. Chapter 1 of this document is an overview of the
DII COE, a brief history of its development, and applicable documents and standards.

Chapter 2 gives a brief technical description of the COE, its components, and the
principles that determine whether a software component is part of the COE or is a mission
application. Selection of the particular components to populate the COE determine what
applications can be supported, but the principles which define a COE are not application-
specific. Chapter 2 also describes the important concept of DII compliance and maps
compliance to levels of interoperability.

Chapter 3 is an overview of the development process. It includes a discussion of the
process from segment registration through development, submission to DISA, integration,
and site installation. The tools provided in the COE and how they are used is key to
understanding automated integration.

Chapter 4 describes SHADE and other database considerations within the context of the
COE. Databases are heavily used within COE-based systems, and early consideration of
their structure, how they are to be used, and how they are to fit into the overall system is
crucial in building a successful system.

Chapter 5 describes the runtime environment as it exists for operational sites, the disk
directory and file structure fundamental to the COE, and the procedures for integrating
segments into a runtime environment. Requirements detailed in Chapter 5 must be
carefully followed so that applications will not interfere with each other, and so that
integration is largely an automated process.

Chapters 6, 7, and 8 are new with this version of the I&RTS. They describe extensions for
the COE reference implementation that runs on NT platforms, extensions to the COE to
support Web applications, and support for Distributed Computing Environment (DCE)
applications respectively.

Chapter 9 provides some suggestions for setting up a software development environment.
Few requirements are stipulated for a development environment, allowing as much
freedom for developers and program managers as possible.

Chapter 10 describes two important components for both developers and operational sites:
the online COE Software Distribution Management System (SDMS), and the COE
Information Server (CINFO). These components are used to disseminate and manage
software, documentation, meeting notices, and general information of importance to the
COE community.

Appendix A lists the currently supported COE configurations. The appendix includes
supported hardware, and supported COTS versions. It also describes the Reference

Document Structure

DII COE I&RTS: Rev 3.0 July 1997 1-19

Implementation program whereby vendors may obtain low-level components of the COE
and port them to their hardware platforms.

Appendix B presents a checklist for developers to use as an aid in determining the degree
to which a segment is DII-compliant. As described in the appendix, some conditions are
mandatory, others require a migration strategy to show conformance, while others are
optional but recommended. This appendix has been reworded and reformatted to be
clearer and easier to apply, but is otherwise unchanged from the previous I&RTS version.

Appendix C describes the automated tools provided with the COE. A number of new tools
are provided to simplify the segment development and maintenance life cycle. The
philosophy is to provide developers with access to the same tools that integrators will use
so that segment integration is performed, as much as possible, by segment developers
prior to segment delivery. Integration of segments with the COE is the responsibility of
the segment developer. Government integrators serve as validators only in this process to
ensure that developers produce DII-compliant segments. In addition to segment
validation, government integrators perform system-level integration of all segments
submitted by all developers to create the target system.

Appendix D gives additional information on the COE online repository (SDMS) and the
COE information server (CINFO).

Appendix E describes how to register a segment and what information is required for
registration. Segment registration is required in order to identify potential conflicts as early
in the development cycle as possible.

The remaining appendices provide additional information on products within the COE,
such as the Relational Database Management System (RDBMS), that are either vendor-
specific or product-version-specific.

Finally, a List of Acronyms used in the I&RTS are presented and a Glossary of frequently
encountered terms. The acronyms and terms are encountered throughout DII COE-related
documents.

Document Structure

1-20 July 1997 DII COE I&RTS: Rev 3.0

This page is intentionally blank.

The DII COE

DII COE I&RTS: Rev 3.0 July 1997 2-1

2. The DII COE

The concept of a COE as embodied in the DII COE is perhaps the most significant and
useful technical byproduct of the Joint Service/Agency technical meetings that led to the
successful GCCS development effort. It represents the culmination of several years of
development amongst the services/agencies and it is interesting to note that the
services/agencies independently arrived at similar conclusions. The DII COE encompasses
architecture, standards, specifications, software reuse, shareable data, interoperability, and
automated integration in a cohesive framework for systems development. Automated
integration is described more fully in Chapter 3.

This chapter is devoted to explaining the DII COE in detail. Definition of a COE is
principles-driven, not application-driven, so this chapter begins with a discussion of those
principles. Selection of the actual components to populate the COE creates a COE
reference implementation1. This is important because the components which constitute a
COE instantiation determine the specific mission domain that a COE can address (e.g.,
C4I for GCCS, logistics for GCSS, finance for ECPN), and how broadly defined the
mission domain can be. Because the COE is structured so that only required components
are loaded, a properly defined COE is suitable for a service-specific system (e.g., Navy
JMCIS, Air Force Battlefield Situation Display [BSD]) or a joint system (e.g., GCSS,
ECPN). Also, because the architecture is principles-driven, the DII COE is extensible to
larger mission domains by expanding the selected set of software components. The COE is
an open architecture whose principles apply equally well to UNIX2 and non-UNIX
platforms such as the Personal Computer (PC). The DII COE contains a reference
implementation for both UNIX and NT platforms.

Subsection 2.1 discusses fundamental COE concepts and also describes what is meant by
DII compliance and interoperability. As with any standard, compliance is required to avoid
conflicts that prevent interoperability. Take careful note in reading subsection 2.1 that the
discussion is relevant to any COE-based system since the principles apply much more
broadly than to a single system such as GCCS or GCSS. Remaining subsections elaborate
on software and hardware configurations selected for support by DISA and how the
software is structured at a top level to limit site operators to only those functions they are
authorized to access.

1 Reference implementation means that an implementation of the COE exists and has been used as the
basis for producing the same functional equivalent on other platforms. It does not imply that developers
will be provided with source code to the COE and thus be responsible for porting it to other platforms.
2 UNIX in this document is used in the sense of a vendor-proprietary implementation of the “traditional”
UNIX operating system. Although desirable, it is not necessary that vendors have received an X/Open
UNIX 95 branding.

Fundamental COE Concepts

2-2 July 1997 DII COE I&RTS: Rev 3.0

2.1 Fundamental COE Concepts

In COE-based systems, all software and data - except certain portions of the kernel (see
subsection 2.1.2.1) such as the operating system and basic windowing software - are
packaged in self-contained units called segments. This is true for COE infrastructure
software and for mission-application software as well. Segments are the most basic
building blocks from which a COE-based system can be built. Segments are defined in
terms of the functionality they provide, not in terms of “modules,” and may in fact consist
of one or more “modules.” They are defined as a collection of related functions as seen
from the perspective of the end user, not the developer. The reason for defining segments
in this way is that it is a more natural way of expressing and communicating what software
features are to be included in, or excluded from, the system than by individual process, file
name, or data table. For example, it is more natural to think of a system as containing a
message processing segment than executables called MP_In and MP_Out. It is more
natural to the end user to think of a word processor segment than a software module that
opens a file, another module that paginates a file, another module that compresses a file,
etc.

Those segments that are part of the COE are known as COE-component segments, or
more precisely, as segments that further have the attribute of being contained within the
COE. Segments that are built on top of the COE to provide capabilities specific to a
particular mission domain are mission-application segments. The principles which govern
how segments are loaded, removed, or interact with one another are the same for all
segments, but COE-component segments are treated more strictly because they are the
foundation on which the entire system rests. A later chapter further refines the segment
concept to distinguish between data segments, software segments, patches, etc. but the
point here is that segments are a technique for packaging system components.

Each segment in the system contains a directory with a collection of data files that “self-
describe” the segment to the rest of the COE. The directory that contains these files is
called the segment descriptor directory and the files themselves are called segment
descriptors. The process of decomposing a component into individual packages and
creating the required segment descriptors is called segmentation.

Packaging a system in terms of segments along with the strict rules which govern the COE
and runtime environment provide several immediate benefits:

· Segment developers are decoupled and isolated from one another. Segments are self-
contained within an assigned directory. Developers have maximum freedom within the
assigned segment directory, but minimum freedom outside it. This allows multiple
developers to work in parallel with support for seamless integration after development.

· Extensions to the environment provided by the COE are coordinated through

automated software tools. It is not possible to create a single configuration of the COE
that meets all possible mission-application or site-unique requirements. However, the
COE tools make it possible to extend the environment provided by the COE in a

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-3

carefully controlled way to ensure compatibility and identify segment dependencies
and conflicts.

· Compliance verification and installation can be automated. Standards without

automated validation are difficult to use in practice, especially in a program where the
system is large and there is a need to coordinate activities from several different
contractors, program sponsors, services, and agencies. The COE approach to
validation is closely related to software installation so that automation of one directly
leads to automation techniques for the other.

· Mission-application segments are isolated from the COE. System integration

problems are frequently a result of an undisciplined interaction between software
components or because of tight coupling between components. The COE controls
interaction through APIs and isolates mission applications from the COE-component
segments so that failure of one mission-application segment is less likely to affect
another or affect the stability of the COE foundation itself.

· Segments created by one developer for one system can be readily reused by another
developer for another system. That is, the DII COE is an effective strategy that
includes not just software reuse, but also ensures that a reused segment fits seamlessly
into the new system.

· Integration is simplified and the original developers resolve most integration
problems before the segment is ever submitted. The segment descriptors “self-
describe” the segment so that all pertinent information required to integrate the
segment into a system is contained in a standard, known location. The tools that
validate conformance to the COE detect a large percentage of traditional integration
difficulties. Moreover, the process of integration is largely automated as a byproduct
of the installation tools themselves. By its very nature, the DII COE process pushes
integration responsibilities further down to the original developer than is done with
more traditional approaches.

· Configuration Management is simplified. One way that the COE process simplifies
configuration management is by using segment descriptors that allow dependencies on,
or conflicts with, other segments to be expressed. It then becomes possible to express
the requirement for a top-level functional capability (e.g., a tool for editing an Air
Tasking Order) and then recursively traverse a dependency tree to identify all required
segments for the desired capability.

These benefits apply equally well to UNIX and NT environments and are in fact not
dependent upon the underlying operating system.

The DII COE is a superset of capabilities. It contains far more functionality than would
ever be installed on a single platform or even at a specific operational site. Thus, it is
important to note and understand that just because a segment is part of the COE, it is not
necessarily always present or required. Considerable flexibility is offered to customize the
environment so that only the segments required to meet a specific mission-application

Fundamental COE Concepts

2-4 July 1997 DII COE I&RTS: Rev 3.0

need are present at runtime. This approach allows minimization of hardware resources
required to support a COE-based system.

To illustrate the point, consider an example. The COE contains a service for displaying
maps. However, some C4I operators in command centers only need to read and review
message traffic and do not need or want to view a tactical display. Logistics operators
using GCSS do not need to see the tactical picture at all and may only desire to see a map
when planning transportation routes. For such operators it is not necessary at runtime to
have the extra memory and performance overhead of the segments that generate
cartographic displays.

Understanding the concept of a segment is fundamental to understanding and using the
DII COE. It is, however, only the starting point. Given the background on how COE-
based systems are packaged, it is now time to understand the internal structure of the DII
COE.

2.1.1 COE Taxonomy

Segments that comprise the COE can be categorized in several ways. The original GCCS
COE was subdivided into 19 functional areas and was organized largely by technologies
employed such as network, database, and Mapping, Charting, Geodesy, and Imaging
(MCG&I). Working groups were established for each of the 19 functional areas to
consolidate operational requirements from each of the services/agencies and to evaluate
and recommend candidate modules as core components. This taxonomy was initially
successful and led to several early successes. However, the large number of working
groups defined by this taxonomy quickly became unwieldy and communication within and
between working groups became infeasible.

The DISA COE Design Working Group revisited the COE taxonomy as part of the effort
to expand the GCCS COE into a DII COE. The present taxonomy consists of two layers:
Infrastructure Services and Common Support Applications3. These two layers are
described in more detail in the Architectural Design Document for the Defense
Information Infrastructure (DII) Common Operating Environment (COE), and
summarized in Figure 2-1. While encompassing the same functionality as the original 19
functional areas, this taxonomy approaches the problem from an architectural perspective
rather than functional, and greatly reduces the communications burden in and between
working groups. Figure 2-1 will be updated to include other functional areas as
appropriate as the COE is extended to other mission domains. It has been updated since
the Architectural Design Document to extend it for logistics support and to include a Web
Server. This server is provided to allow access to COE-based applications from a Web
browser. A later chapter in the I&RTS describes the COE Web in more detail.

3 The concepts of a COE kernel and SHADE are presented later in this section. Both of these concepts
should be viewed as subsets of the Infrastructure Services and Common Support Applications layers. The
COE kernel is a limited subset of the Infrastructure Services that is required on every platform regardless
of how it will be used. SHADE is a subset of Infrastructure Services and Common Support Applications
that deals with database issues. It is frequently useful to discuss the kernel and SHADE as separate
entities, but their functionality is fully contained within the two layer taxonomy discussed in this section.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-5

The difference between Infrastructure Services and Common Support Applications is the
difference between data and information (i.e., processed data). It is the difference between
exchanging data and sharing data. Infrastructure Services provide low-level tools for data
exchange. These services provide the architectural framework for managing and
distributing the flow of data throughout the system. Example services include
Transmission Control Protocol/Internet Protocol (TCP/IP) and User Datagram Protocol
(UDP) protocols, DCE, and CORBA. The achievement of effective data sharing requires
use of all the COE services, especially those provided by the Shared Data Environment
(SHADE). Subsection 2.1.2.5 describes SHADE in more detail.

Common Support Applications, on the other hand, provide the architectural framework
for managing and disseminating information flow throughout the system, and for sharing
information among applications. This level contains facilities for processing and displaying
common data formats and for information integration and visualization. Services in this
layer tend to be mission-domain specific. Examples include generation and dissemination
of mission-relevant alerts, and word processing support.

Figure 2-1 also shows that there is a relationship between the service provided and
whether it is typically provided by a COTS product or a GOTS product. The DII COE
uses COTS whenever possible, in keeping with DOD directives. Infrastructure Services
are normally provided by COTS solutions because they are closely tied to underlying
vendor products such as the operating system. Common Support Applications, because
the services they provide are closely related to mission applications, tend to be provided
by GOTS solutions. In some cases, especially in the Office Automation area, services may
include COTS solutions.

Selection of software modules that fulfill these COE component responsibilities is an
ongoing task as is the evolutionary nature of the DII COE. Changes are made to further
populate the COE, to optimize selected components, or to extend the COE to meet
requirements from other mission domains. Even though the process is evolutionary, the
COE preserves backwards compatibility so that mission applications are not abandoned
just because there is an update of the COE. Refer to the appropriate API, User's Guide,
and system release documents for detailed information on the components currently
selected for the COE.

2.1.2 COE Architecture

Figure 2-2 is a simplified diagram that illustrates the various levels within the DII COE
and the relationship between the COE, component segments, mission-application
segments, and SHADE. As can be seen, the COE encompasses APIs, GOTS and COTS
software, the operating system, windowing software, standards (TAFIM), and
specifications (User Interface Specification, I&RTS, etc.). Physical databases are also
considered to be part of the COE4, including the software (such as the RDBMS), which

4 In previous COE releases, physical databases were considered outside the scope of the COE although the
database software was inside the COE. The programmatic decision to temporarily exclude physical

Fundamental COE Concepts

2-6 July 1997 DII COE I&RTS: Rev 3.0

accesses and manages the data. SHADE is an integral part of the DII COE, and
encompasses databases and related software as noted in the diagram. SHADE and each of
the layers are described in more detail below. A Developer’s Toolkit is also provided in
the COE as shown in Figure 2-2.

Figure 2-2 is a generic diagram intended only to show relationships. The labeled boxes in
the figure are not intended to be exhaustive, but are representative services because (a)
otherwise the diagram would be needlessly complicated, and (b) the COE is evolving to
include other segments to support new mission domains. The services shown are
representative, but the structure and principles discussed are the same across all mission
domains.

Office
Automation

MCG&I Correlation

Alerts
Message

Processing
Logistics
Analysis

Online
Help

Data Access
Services

Common Support Applications

Management
Services

Comms Web
Server

Workflow
Management

Distributed
Computing

Global Data
Management

Presentation
Services

Data
Management

Infrastructure Services

Operating System Services

COTS
Solutions

GOTS
Solutions

Figure 2-1: DII COE Services

To use a hardware analogy, the COE is a collection of building blocks that form a
software “backplane.” Segments “plug” into the COE just as circuit cards plug into a
hardware backplane. The blocks containing the operating system and windowing
environment are akin to a power supply because they contain the software which
“powers” the rest of the system. The segments labeled as COE-component segments are
equivalent to already built boards such as Central Processing Unit (CPU) or memory

databases was made in order to concentrate on the services that would more directly support mission
applications. Databases are now included in the DII COE as part of the SHADE.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-7

cards. Some of them are required (e.g., CPU) while others are optional (e.g., a specialized
communications interface card) depending upon how the system being built will be used.
The blocks in Figure 2-2 labeled as mission application areas are composed of one or more
mission-application segments. These segments are equivalent to adding custom circuit
cards to the backplane to make the system suitable for one purpose or another.

The API layer shown in Figure 2-2 defines how other segments may connect to the
backplane and utilize the “power supply” or other “circuit cards.” This is analogous to a
hardware schematic diagram that indicates how to build a circuit card that will properly
plug into the backplane. The figure also implies that APIs are the only avenue for
accessing services provided by the COE. This is true for all COE software and all layers,
including COTS software. However, the COE does not create an additional layer on top
of the COTS software. These components may be accessed directly using vendor-supplied
APIs for these commercial products as long as such usage does not circumvent the
intended COE architecture. For example, the COE includes a POSIX-compliant operating
system. Some vendors provide non-POSIX compliant extensions to the operating system
services. Use of such extensions, even though they are readily available through vendor-
supplied APIs, is not allowed because such usage violates the intended COE architecture.

This hardware analogy can be extended to the SHADE portion of the COE, but with some
significant distinctions. Within this conceptual model, the Database Management System
(DBMS) functions as the COE’s disk controller and disk drives. The applications’
databases can be equated to directories or partitions on the drives accessed through the
DBMS “disk controller.” Data objects belonging to each database then can be considered
as files within those “directories.”

This analogy is critical to understanding the modularity limitations for databases within the
COE. One can replace most peripherals or circuit cards without any side effects just as
one can replace mission applications without losing information. However one cannot put
in a larger disk drive, or change from one type of controller to another, without losing the
data on the disk. While upgrading mission applications is like swapping circuit cards,
upgrading databases is like rebuilding a disk or directory structure. Instead of replacing a
component, one must save and then restore the files on the disk. Proper design of
COE/SHADE databases must provide the ability to perform field upgrades without the
loss of any data.

COE/SHADE databases are divided among segments as are mission applications, but with
a different focus. Mission applications are segmented based on their functionality.
Databases are segmented functionally by the subject areas of the mission applications they
support. Mission applications are functional modules; databases are information modules.

The precise configuration of COTS products used in the COE is placed under strict
configuration control. This is necessary because configurable items such as the amount of
shared memory or swap space must be known and carefully controlled in order for other
components in the COE to operate properly. For this reason, COTS products are assigned
a version number in addition to the vendor-supplied version number so as to be able to
track and manage configuration changes. Databases are also assigned version numbers

Fundamental COE Concepts

2-8 July 1997 DII COE I&RTS: Rev 3.0

because their configurations must be controlled since the data content may change from
release to release, or the database schema may change.

A fundamental principle throughout the COE is that segments are not allowed to directly
modify any resource “owned” by another segment. This includes files, directories,
modifications to the operating system, and modification to windowing environment
resources. Instead, the COE provides tools through which a segment can request
extensions to the base environment. The importance of this principle cannot be
overemphasized because environmental interactions between software components are a
primary reason for difficulties at integration time. By providing software tools that
arbitrate requests to extend the environment, integration can be largely automated and
potential problem areas can be automatically identified.

For example, the COE predefines a set of ports in the UNIX /etc/services file.
Some segments may need to add their own port definitions, but this will create conflicts if
the port definitions are the same as those defined by the COE or another segment. To
identify and prevent such conflicts, segments issue a request to the COE (see Chapter 5
for how this is done) to add their port definitions. This process is called environment
extension because a segment is modifying the predefined environment by extension, not
through replacement or deletion.

COE-component segments shown in Figure 2-2 are typically designed to be servers,
although some are provided as libraries to be linked with an application segment. Note
that in practice such segments will often operate in both a client and server mode. For
example, a track management segment is a server for clients that need to retrieve the
current latitude/longitude location of a platform. But the track manager itself is a client to
a communications server that initially receives track-related reports from sensors or other
sources. Refer to the Architectural Design Document for the Defense Information
Infrastructure (DII) Common Operating Environment (COE) document for more detailed
discussion of how COE-component segments are designed and interact. For purposes of
the present discussion, it is sufficient to view COE segments as servers that are accessible
through APIs.

2.1.2.1 COE Kernel

The COE will normally make available a large number of segments, not all of which are
required for every application. The COE kernel is the minimal set of software required on
every platform regardless of how the platform will be used. The COE kernel5 components
are shown in Figure 2-2 and include the Operating System and Windowing Services and a
collection of other services that properly belong in the Infrastructure Services Layer.

5 The kernel includes both COTS (e.g., operating system) and GOTS software. The other COE layers also
contain COTS software. Contact the DII Engineering Office for information on responsibility for
obtaining licenses for COTS products within the COE and kernel, and for which COTS product DISA
will distribute.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-9

M
IS

SI
O

N
A

PP
L

IC
A

T
IO

N
S

B
us

in
es

s
A

pp
lic

at
io

ns
Fu

nc
tio

na
l

A
pp

lic
at

io
ns

JO
IN

T
/C

IN
C

A
pp

lic
at

io
ns

Se
rv

ic
e

C
2

A
pp

lic
at

io
ns

In
te

lli
ge

nc
e

A
pp

lic
at

io
ns

C O E

D
ev

el
op

er
’s

 T
ki

t
St

an
da

rd
 A

pp
lic

at
io

n
Pr

og
ra

m
 I

nt
er

fa
ce

s

St
an

da
rd

s:
- I

&
R

TS
- S

ty
le

 G
ui

de
- P

O
SI

X
- T

A
FI

M
- J

TA

C
O

M
M

O
N

 S
U

PP
O

R
T

 A
PP

L
IC

A
T

IO
N

S

A
le

rt
s

C
or

re
la

tio
n

M
C

G
&

I
M

sg
 P

ro
c

O
ff

ic
e

A
ut

om
at

io
n

L
og

is
tic

s
A

na
ly

si
s

O
nl

in
e

H
el

p

M
an

ag
em

en
t

Se
rv

ic
es

C
om

m
s

D
is

tr
ib

ut
ed

C
om

pu
tin

g
Pr

es
en

ta
tio

n
Se

rv
ic

es
W

or
kf

lo
w

M
an

ag
em

en
t

W
eb

Se
rv

er

IN
FR

A
ST

R
U

C
T

U
R

E
 S

E
R

V
IC

E
S

O
pe

ra
tin

g
Sy

st
em

 S
er

vi
ce

s
(U

ni
x,

 N
T

) a
nd

 W
in

do
w

in
g

(X
, M

ot
if,

 N
T

)

N
et

w
or

k
Sv

cs
(N

IS
+,

 D
N

S)
Sy

st
em

 M
gm

t
Se

rv
ic

es
C

O
E

T
oo

ls
E

xe
cu

tiv
e

M
an

ag
er

Pr
in

t
Se

rv
ic

es
Se

cu
ri

ty
 M

gm
t

Se
rv

ic
es

KERNEL

S H A D E

D
at

a
A

cc
es

s

D
at

a
M

gm
t

G
lo

ba
l D

at
a

M
an

ag
em

en
t

D
at

ab
as

es

O
th

er
Fi

le
s

In
te

l
D

B

C
om

ba
t

Su
pp

or
t

D
B

’s

St
ra

te
gi

c
Sp

ec
ifi

c
C

2
D

B
’s

T
ac

tic
al

Sp
ec

ifi
c

D
B

’s

Figure 2-2: DII COE Architecture

Fundamental COE Concepts

2-10 July 1997 DII COE I&RTS: Rev 3.0

A COE kernel will always contain the operating system and windowing environment, but
it will normally include six other features:

1. a basic System Administration function,
2. a basic Security Administration function,
3. an Executive Manager function (e.g., a desktop GUI such as Windows NT or

Common Desktop Environment [CDE]),
4. a template for creating privileged operator login accounts,
5. a template for creating non-privileged operator login accounts, and
6. COE tools for segment installation.

The System Administration segment is required because it contains the software necessary
to perform basic system administration tasks such as user account and profile
management. The Security Administration segment is required because the security
administrator uses it to enforce system security policy. The operating system and other
COE components provide security policy enforcement. Segments loaded later may provide
additional system and security administration capabilities, but the minimum capabilities for
security enforcement and security administration are in the kernel.

The Executive Manager component of the kernel is required because it is the interface
through which an operator issues commands to the system. The Executive Manager is an
icon-and-menu-driven desktop interface, not a command-line interface. The templates
included in the COE kernel are used to define the basic runtime environment context that
an operator inherits when he logs in (which processes to run in the background, which
environment variables are defined, etc.). The COE tools within the kernel allow other
segments to be installed and enforce critical COE principles. The COE kernel assures that
every platform in the system operates and behaves in a consistent manner and that every
platform begins with the same environment.

2.1.2.2 Infrastructure Services

Infrastructure Services are largely independent of any particular application. Within the
Infrastructure Services layer, Management Services include network, system, and security
administration. Communications Services provide facilities for receiving data external to
the system and for sending data out of the system. Distributed Computing Services
provide the infrastructure necessary to achieve true distributed processing in a
client/server environment. Presentation Services are responsible for direct interaction with
the human whether that be through windows, icons, menus, or multimedia. Data
Management Services include relational database management as well as file management
in a distributed environment. Workflow and Global Data Management Services are
oriented towards managing logistics data (e.g., parts inventory, work in process). Note
that Data Management Services and Global Data Management Services are part of
SHADE.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-11

2.1.2.3 Common Support Applications

Unlike Infrastructure Services, Common Support Applications tend to be much more
specific to a particular mission domain. The Alerts Service is responsible for routing and
managing alert messages throughout the system whether the alert is an “out of paper”
message to a systems administrator or an “incoming missile” alert to a watch operator.
The Correlation Service is responsible for maintaining a consistent view of the battlespace
by correlating information from sensors or other sources that indicate the disposition of
platforms of interest. MCG&I Services handle display of National Imagery and Mapping
Agency (NIMA) maps or other products, and imagery received from various sources.
Message Processing Services handle parsing and distribution of military-format messages.
Office Automation Services handle word processing, spreadsheet, briefing support,
electronic mail, World-Wide-Web browsers, and other related functions. (Browsers are in
the Common Support Applications layer, but Web Servers fall within the Infrastructure
Services layer.) Logistics Analysis contains common functions, such as Pert charts, for
analyzing and displaying logistics-related information. Online Help Services provide
applications with a uniform technique for displaying context-sensitive help. Finally, Data
Access Services are part of SHADE and provide applications with common data-access
methods procedures, and tools.

2.1.2.4 COE Developer Toolkits

Since the COE is not a system but a foundation on which systems are built, the COE
contains a collection of developer toolkits to assist the developer in creating mission-
application software. This is illustrated in Figure 2-2 in the block labeled Developer’s
Toolkit. However, the toolkits are required only during software development, not during
runtime at an operational site. Therefore, developer toolkits are shown as part of the COE,
but outside the Infrastructure Services and Common Support Applications layers. They
are obtained from DISA separate from an actual installable system.

The COE developer toolkits contain libraries of APIs and a collection of tools to assist in
the segmentation process. An overview of the software development process is presented
in the next chapter. Appendix C provides an overview of the COE developer tools (and
lists some COE runtime tools). Refer to the appropriate DII COE Programmer’s Guides
for detailed information on the APIs and segmentation tools.

2.1.2.5 SHADE

SHADE is an important addition to this version of the I&RTS. Its purpose is to provide
the data “missing piece” for the DII COE. The present subsection provides an overview of
SHADE and describes how it fits into the overall DII COE. A later chapter will cover
SHADE and database topics in much more technical detail and depth.

Present systems are not truly interoperable because of inconsistency in algorithms, but also
because data management across systems and operational sites has led to data redundancy
and inconsistencies. Moreover, even when data is consistent across systems, it is not
presently structured so as to be shareable. The SHADE approach is to provide the

Fundamental COE Concepts

2-12 July 1997 DII COE I&RTS: Rev 3.0

architectural structure to solve the data sharing problem that in turn guarantees data
consistency, eliminates redundancy6, and promotes true data interoperability and sharing.
The SHADE goal is to allow any authorized user from any authorized workstation to
locate, access, and integrate shared and synchronized data. This is in keeping with the
DISA vision of an integrated global environment that allows warriors to perform “Any
Mission, Any Time, Any Where.”

SHADE is both a strategy for data sharing and the mechanisms to achieve it. SHADE is
an integral part of the DII COE, but it must also bridge the gap between COE-based
systems and legacy non-COE systems because it must provide mechanisms for accessing
large databases that are still on legacy mainframes. SHADE provides COE-component
segments in both the Infrastructure Services and Common Support Applications layers to
accomplish this task. SHADE includes the required data-access architectures, data sharing
methodology, reusable software and data components, and guidelines and standards for
the development and migration of systems that meet the user’s requirements for timely,
accurate, and reliable data.

The SHADE components of Figure 2-2 are expanded upon in Figure 2-3 to show the
architecture from a data management perspective. From a process point of view (top part
of the diagram), SHADE includes tools for validating database segments and a repository
for data reuse. Metadata Management is at the top layer between the mission applications
and data-access methods. This layer is among the more challenging aspects of SHADE
because it requires standardization across the joint community. The Shared Data Access
layer provides services for locating and retrieving the desired data. This layer also
manages data replication and distribution to ensure that all databases are kept closely
synchronized. Data security is also provided in this layer.

The Physical Data Management layer is provided by commercial products and is initially
organized as relational databases. (Migration to include other database management
technologies such as object-oriented or object relational will be achieved as requirements
emerge and technology matures.) SHADE physical data management services may also
include document retrieval, image management, engineering drawings, or other specialized
storage and retrieval technologies where appropriate. The databases may be distributed
across the network, and may in fact be distributed among geographical sites.

Figure 2-3 shows three types of database segments according to their scope and how they
are shared. The three types are Unique, Shared, and Universal.

6 Databases are often deliberately replicated in actual practice for performance reasons. The term
“redundant data” is used when the same data is captured by different systems and stored in different
databases. For example, the friend/foe status of a particular country might be entered into two systems
where each system must maintain and keep the data current. By contrast, when intentional replication is
used, the friend/foe status is captured and maintained by one system and provided to another for its use.
SHADE may not rule out multiple copies of the same data but it does manage the duplication to ensure
that all databases are kept synchronized. Present systems often do not employ effective mechanisms for
data replication, leading directly to significant interoperability problems. SHADE does eliminate
redundancy between systems because, for performance reasons, it replicates and manages duplication
across systems to ensure data consistency.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-13

Unique database segments are those which are typically used by only one application or
are under the configuration control of the segment sponsor. Unique data may be shared
between applications, but the usage is restricted to a single mission domain. An example of
a Unique database segment is a configuration table that an application reads at
initialization time. Such a table would not normally be used by other applications. This
example also demonstrates that Unique database segments may frequently be represented
by a flat file or similar structure rather than a true database.

Shared database segments support the information requirements of multiple applications
or across multiple database segments. Shared database segments are typically mission-or-
functionally-oriented, and are generally specific to a limited number of mission domains.
Because they affect multiple applications that will likely span services or functional areas,
Shared database segments must be under joint configuration control. An example of such
a database segment is a database of logistics drawings for military hardware. Such data
spans multiple services, it is used for different purposes (e.g., ordering, inventory control,
maintenance) and hence spans multiple applications, but it is generally limited in scope to
the logistics community. Another example is a segment containing invoice information that
is required by both the finance and procurement communities.

Universal database segments represent the other extreme of “shareability.” Universal
database segments reflect a need for identical data in diverse areas, are used by many
applications, and span multiple mission domains. Universal database segments usually have
no dependency on any other segment (except the DBMS segment) and frequently consist
of a small number of tables and elements. A common type is reference or lookup tables.
An example is a database of country-code abbreviations. A larger example would be the
equivalent of “Jane’s Data” with characteristics and performance data concerning
weapons, aircraft, ships, and communications systems. Universal database segments are
under stricter configuration control and require DISA and DOD Data Administration
coordination.

The three database segment types are listed in increasing order of scope and “shareability.”
That is, Unique is limited in scope and therefore unlikely to be shared by many
applications, while Universal is very broad in scope and must be shared across applications
in order to promote true interoperability. There is no physical difference in the database
segments, but the level of configuration management increases due to the wider impact
changes would have on operational systems that use the database segments.

2.1.2.6 COE “Plug and Play”

The DII COE is structured as a “plug and play” architecture. The key to the “plug and
play” design is conformance to the COE through the rules detailed in this document and
through using only the published APIs for accessing COE services. There is considerable
danger in using unpublished, “private” APIs, or APIs from legacy systems, because there
is no guarantee that interfaces used in this fashion will remain the same or even exist in
subsequent releases. This is also generally true of COTS products and the risks are the
same.

Fundamental COE Concepts

2-14 July 1997 DII COE I&RTS: Rev 3.0

M
is

si
on

A
pp

lic
at

io
ns

Repository and Tools

Management

Database Engineering/Migration Process

JO
IN

T
/C

IN
C

A
pp

lic
at

io
ns

Se
rv

ic
e

C
2

A
pp

lic
at

io
ns

In
te

lli
ge

nc
e

A
pp

lic
at

io
ns

B
us

in
es

s
A

pp
lic

at
io

ns
Fu

nc
tio

na
l

A
pp

lic
at

io
ns

M
et

ad
at

a
M

an
ag

em
en

t
D

at
a

St
an

da
rd

s
M

ap
pi

ng
s

M
od

el
s

Sc
he

m
as

D
at

ab
as

e
Pa

ck
ag

in
g

Ph
ys

ic
al

D
at

a
St

or
ag

e
D

at
ab

as
e

A
dm

in
is

tr
at

or
Ph

ys
ic

al
 D

at
a

M
an

ag
em

en
t

U
ni

qu
e

Sh
ar

ed
U

ni
ve

rs
al

Sh
ar

ed
D

at
a

D
at

ab
as

e
Se

gm
en

ts
L

eg
ac

y/
E

xt
er

na
l

D
at

a
Sh

ar
ed

 D
at

a
Se

rv
er

s

Sh
ar

ed
 D

at
a

A
cc

es
s

D
at

a
R

ep
lic

at
io

n/
D

is
tr

ib
ut

io
n

D
at

a
L

oc
at

io
n

(D
ir

ec
to

ry
)

D
at

a
Se

cu
ri

ty
/I

nt
eg

ri
ty

D
at

a
M

ed
ia

tio
n

(S
yn

ta
x

- S
em

an
tic

s)

Figure 2-3: SHADE Data Architecture

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-15

Discussion of the COE as a “plug and play” architecture is not intended to trivialize the
effort that may be required to develop and integrate a segment into the COE. Migration of
existing legacy systems to the COE is conceptually straightforward but may require
considerable effort due to the requirement to switch to a different set of building blocks.
That is, the effort may not be so much in adjusting to a new architectural concept but in
adjusting code to use a different set of APIs. The “plug and play” paradigm is a good
conceptual model because it clearly conveys the goal and the simplicity that most segment
developers will encounter.

2.1.3 COE Configuration Definitions

A COE-based system will consist of a large number of segments. It is neither desirable nor
feasible to install all segments on all platforms. Some segments need to be installed on one
platform but not another because of the role that the platform will play in the overall
system. For example, systems will often dedicate one or more platforms with large-
capacity disk drives to be configured as database servers. Workstations that operators use,
client workstations, will not have large enough drives to handle the database storage
requirements. Therefore, the database server software should be loaded on the database
server but not the client platform. The COE kernel is required on every platform, but
additional segments are dependent upon how the platform will be used.

The COE includes the ability to create configuration definitions that define which
segments are to be loaded on which platforms. A configuration definition7 is a hierarchy
that defines collections of segments that are grouped together for installation convenience.
For example, it is more convenient for an installer to indicate that a platform is to act as a
database server (a configuration definition) or used as an intelligence analyst workstation
(another configuration definition) than to manually and individually select all of the
segments that need to be installed. The COE is designed so that a site may install
predefined configuration definitions or can customize the installation to suit site-specific
requirements.

A configuration definition is organized into folders, configurations, and bundles. Figure 2-
4 uses an example from the GCCS system to show the relationship between each of these
terms, and to illustrate the flexibility in predefining and managing software installations.
The example shows how the GCCS system could be organized into configuration
definitions, but not how GCCS must be organized. The example is not intended to convey
that platforms must be dedicated to a single, specific function. As long as there are no
segment conflicts, a platform may be configured to support multiple missions and thus
achieve the goal of “any platform for any function.” The example is intended only as an aid
to understanding how configuration definitions may be constructed.

7 The term Configuration Definition replaces the term variant in previous I&RTS releases. The concepts
are exactly the same except that variant has the negative connotation of implying a “deviation.” Further,
the Configuration Definition concept is more refined in this I&RTS version in its decomposition into
folders, configurations, and bundles.

Fundamental COE Concepts

2-16 July 1997 DII COE I&RTS: Rev 3.0

The objective of the example shown in Figure 2-4 is to install identical database servers in
Intelligence centers at two GCCS sites: a Commander, Joint Task Force (CJTF) and a
Commander-in-Chief Headquarters (CINCHQ). In this simplified example, both
Intelligence centers use imagery applications, but the Intel center at the CINCHQ has
access to hardware for capturing images, while the one at the CJTF does not.

For simplicity, the database server is to consist of 4 segments: a segment for creating
database backups (Bkup), an ad hoc query application (AdHocQ), a presentation package
(Forms), and a patch (Patch1). The imagery software is to consist of an application for
creating briefs (Brief), an application for capturing images (Capture), and an
application for converting images from one format to another (Convert).

A configuration definition file is a file that describes the hierarchy and relationships
among folders, configurations, bundles, and segments that comprise a distribution. A
distribution8 is the physical media used to install DII-compliant segments (e.g., Digital
Audio Tape [DAT] tape, 8mm tape, Compact Disc Read Only Memory [CDROM]). A
single distribution may span multiple media of the same type (e.g., several DAT tapes,
several CDROMs). A configuration definition file is used to generate the table of contents
for what is contained in the distribution.

In addition to being physical media, another useful way to think of a distribution is as a
high-level division that can be used to distinguish between systems (e.g., GCSS, GCCS,
ECPN), as shown in this example. The example would work equally well by defining the
desired distributions one level lower in the tree and thus place responsibility for site
configurations on a manager responsible for the site, rather than on a manager responsible
for GCCS configurations at all sites. A distribution is not sufficiently detailed to permit the
actual installation of any software since it must be decomposed further to the level of an
actual platform.

A folder, likewise, is a non-installable list of one or more folders, configurations, or
bundles. Folders are used for organizational and display purposes only. A folder is not
directly installable because it is organized at a level that spans multiple platforms and
perhaps even multiple sites. In this example, the GCCS distribution media is composed of
multiple folders at the top level representing geographically dispersed sites. The next
lower level of folders is contained within a single site.

A configuration is a list of bundles and/or segments that can be installed on a single
machine. Configurations are mutually exclusive. That is, only one configuration can be
installed on a single machine because there may be conflicts within the segments that
comprise two different configurations. In the example, the Intel folder for the CJTF site
contains two configurations for platforms: a database server configuration (DBServer)
and an imagery configuration (Imagery1). A particular platform may be loaded with a
DBServer or an Imagery1 configuration, but not both. This does not mean that
imagery applications cannot reside on a database server. It only means that in this

8 The distribution term is a POSIX concept. It has been modified slightly in the I&RTS to include
segments.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-17

example, an engineering decision was made to prevent it from happening because of
potential resource conflicts between the two configurations. If it were actually desirable to
combine the applications in practice, a configuration could be defined which contained
database server and imagery bundles. Or, desired segments could be selected individually
for loading onto the platform.

FFG CVN CJTF ... MEF CINCHQTRANSCOM ...

Crypto Ops Intel EW Logistics ... Ops Intel ...

DBServer Imagery1

Convert CaptureBriefBkup AdHocQ FormsPatch1

DBUtils Camera

DBServer Imagery2

Distributions

Configurations

Bundles

Segments

Folders

Folders

GCCS
GCSS

ECPN
...

Figure 2-4: Configuration Definitions

A bundle9 is a list of other installable bundles and/or segments. For brevity, Figure 2-4
does not show any bundles that contain other bundles. A bundle is directly installable, even
if it contains further bundle definitions because the segments that comprise the bundle are
checked when the bundle is created to verify that they do not conflict with one another. In
the example shown, there are two bundles: DBUtils and Camera. The DBUtils
bundle is used at both the CJTF and CINCHQ sites, but Camera is only used at
CINCHQ.

There are several things to note about this example.

1. At installation time, the installer can use the installer tool to select a configuration and
all of the appropriate segments will automatically be installed. The installer may also

9 The bundle concept is from POSIX, but has been modified slightly in the I&RTS to include segments.

Fundamental COE Concepts

2-18 July 1997 DII COE I&RTS: Rev 3.0

choose to decompose the configuration to look at individual bundles and segments and
install them individually instead.

2. Configurations, bundles, and segments may be selected and installed directly without

further selection on the part of the installer. Folders cannot; the installer must select
some lower level in the hierarchy.

3. Folders may participate in multiple distributions or other folders; configurations may

participate in multiple folders; bundles may participate in multiple configurations; and
segments may participate in multiple bundles or configurations. Multiple participation
is subject to the constraint that segments within a configuration or bundle cannot
contain conflicting segments.

4. Configuration definitions are optional. They are provided as a convenience only. Also,

it is possible to skip any of the levels in the configuration definition except for the
lowest level (i.e., segments).

5. If a segment is selected twice either on purpose or as a result of how the configuration

definition is constructed, it is actually installed only once.

6. Care should be taken in creating configuration definitions. It is wise to keep classified

segments separate to avoid security management problems.

The same media can be used to load any platform regardless of which site or in which
space the platform is located; however, during the installation process, only that portion of
the configuration definition required for a particular platform is actually loaded. The COE
kernel is a required member of every distribution.

There are several advantages to configuration definitions:

· From a configuration management and security perspective, only one set of
distribution media needs to be controlled. All software and data that are needed for the
installation are contained on the media.

· From an installation perspective, the site installer only has one set of distribution media

to worry about regardless of platform use or hardware type. (The COE tools allow
segments for multiple platforms to exist on the same physical distribution media. At
installation time, the software determines the platform type and then makes available
for selection only those segments that can execute on the platform.)

· From a system design perspective, the ability to create configuration definitions allows

the flexibility of loading and executing only that software which is required to support
a particular mission requirement.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-19

2.1.4 DII Compliance

The degree to which “plug and play” is possible is highly dependent upon the degree to
which segments are DII-compliant. DII compliance is defined to be an integer value that
measures

· the degree to which a segment or system achieves conformance with the rules,
standards, and specifications identified by the COE,

· the degree to which the segment or system is suitable for integration with the DII COE
reference implementation, and

· the degree to which the segment or system makes use of COE services.

Appendix B contains a detailed checklist for areas where compliance is mandatory and an
additional checklist for areas where compliance will be required in the future but are
optional at present. The compliance level for a segment is determined by answering
“True,” “False,” or “N/A” for each question in the checklist. The Category 1 (see below)
compliance level assigned is the highest numbered level for which there are not “False”
replies. The COE provides a suite of tools, described in Appendix C, which validate COE
conformance.

By its very nature, an exhaustive list of “do's and don'ts” is not possible. DII compliance
must be guided by overarching principles with checklists and tools to aid in detecting as
many problem areas as possible. Full DII compliance embodies the following principles:

1. Segments shall comply with the guidelines, specifications, and standards defined in the
I&RTS, the User Interface Specification, DII Software Quality Compliance Plan, and
related documents such as the JTA.

2. Software and data shall be structured in segment format. Of necessity, COTS

components of the COE kernel are exempted from this requirement. Segment format is
described more fully in Chapter 5.

3. Segments shall be registered and submitted to the online library. The registration

process is described in Appendix E while submission of segments to the online library
is described in Chapter 10 and Appendix D.

4. Segments shall be validated with the VerifySeg tool prior to submission, and shall

successfully pass the VerifySeg tool with no errors. An annotated listing of the
VerifySeg tool output shall be submitted with each segment release.

5. Segments shall be loaded and tested in the COE environment prior to submission.

Segment developers are responsible for testing their segment within the full COE
kernel and with all COE-component segments that they depend upon. There is no
requirement to include mission-application segments in the test for which there is no
dependency.

Fundamental COE Concepts

2-20 July 1997 DII COE I&RTS: Rev 3.0

6. Segments shall fully specify dependencies, conflicts, and required resources through
the appropriate segment descriptors defined in Chapter 5.

7. Segments shall be designed to be removable and tested to confirm that they can be

successfully removed from the system. Some segments, especially COE components,
are designed to be “permanent” but even these must be removable when a later
segment release supersedes the current one.

8. Segments shall access COE components only through APIs published by DISA and

segments shall not duplicate functionality contained within the COE. There is no
requirement to integrate to COE functionality not required by the segment, but note
that some segments may have an implied dependency on other segments.

9. Segments shall not modify the environment or any files it does not own except through

environment extension files or through use of the installation tools provided by the
COE.

The DII COE defines four areas in which compliance is measured, shown in Figure 2-5,
called compliance categories. Within a specific category, a segment is assigned an integer
value, called the compliance level, which is a measure of the degree to which a segment is
compliant within that category. The DII COE takes this approach because it is especially
useful in developing migration strategies for legacy systems. Compliance categories
indicate the broad area in which a segment must be improved while compliance levels
express the degree to which the segment meets COE objectives within that category.

The four DII compliance categories are:

Category 1: Runtime Environment. This category measures how well the
proposed software fits within the COE executing environment, and the degree to
which the software reuses COE components. It is an assessment of whether or not
the software will “run” when loaded on a COE platform, and whether or not it will
interfere with other segments. This category is closely related to, and is a way of
measuring, interoperability.

Category 2: Style Guide. This category measures how well the proposed
software operates from a “look and feel” perspective. It is an assessment of how
consistent the overall system will appear to the end user. It is important that the
resulting COE-based system appear seamless and consistent to minimize training
and maintenance costs.

Category 3: Architectural Compatibility. This category measures how well the
proposed software fits within the COE architecture (client/server architecture,
DCE infrastructure, CDE desktop, etc.). It is an assessment of the software's
potential longevity as the COE evolves. It does not imply that all software must be
based on client/server or Remote Procedure Call (RPC) techniques. It simply
means that a reasonable design choice has been made given that the specific
architectural characteristics of the COE reference implementation.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-21

Category 4: Software Quality. This category measures traditional software
metrics (lines of code, McCabe complexity metric, etc.). It is an assessment of
program risk and software maturity.

Runtime
Environment Style Guide

Architectural
Compatibility

Software
Quality

0 j 0 k 0 n 0 m

Figure 2-5: DII Compliance Categories and Levels

Note: While there are four compliance categories, style-related items are
included within the I&RTS checklist. Specifications within the
User Interface Specification are mapped to these items at the
appropriate compliance level where they are included. For
example, Category 1 (Runtime Environment) Level 5 compliance
requires adherence to the “look and feel” of the native GUI. The
User Interface Specification contains a checklist for verifying that
a segment conforms to the native GUI.

These four categories attempt to quantitatively answer the following questions about a
proposed addition to the system:

· (Category 1: Runtime Environment) Can the proposed software be added to
the system? Will it adversely affect system interoperability?

· (Category 2: Style Guide) Is the proposed software user-friendly? Will it make

the system appear seamless to an end user?

· (Category 3: Architectural Compatibility) Is the proposed software

architecturally sound and in line with where the COE is going? Will technology
advances quickly obsolete the proposed software?

· (Category 4: Software Quality) What is the program risk? Will significant

program expenditures be required for life-cycle maintenance of the product?

The principles and techniques described in the remainder of this subsection apply to each
of the compliance categories. However, only the compliance levels for the Runtime
Environment Category will be discussed any further.

Fundamental COE Concepts

2-22 July 1997 DII COE I&RTS: Rev 3.0

The COE defines eight progressively deeper levels of integration for the Runtime
Environment Category. These levels are directly tied to the degree of interoperability
achieved as is described in subsection 2.1.5. Note that levels 1-3 are “interfacing” with the
COE, not true integration. True integration begins at level 4.

Level 1: Standards Compliance Level. A superficial level in which the proposed
capabilities share only a common set of COTS standards. Sharing of data is
undisciplined and minimal software reuse exists beyond the COTS. Level 1 may,
but is not guaranteed to, allow simultaneous execution of the two systems.

Level 2: Network Compliance Level. Two capabilities coexist on the same LAN
but on different CPUs. Limited data sharing is possible. If common user interface
standards are used, applications on the LAN may have a common appearance to
the user.

Level 3: Platform Compliance Level. Environmental conflicts have been
resolved so that two applications may reside on the same LAN, share data, and
coexist on the same platform as COE-based software. The COE kernel, or its
equivalent, must reside on the platform. Segmenting may not have been performed,
but some COE components may be reused. Applications do not use COE services
(except for kernel services if the COE kernel is loaded) and are not necessarily
interoperable.

Level 4: Bootstrap Compliance Level. All applications are in segment format
and share the COE kernel. Segment formatting allows automatic checking for
certain types of application conflicts. Use of COE services is not achieved and
users may require separate login accounts to switch between applications.

Level 5: Minimal DII Compliance Level. All segments share the same COE
kernel and functionality is available via the Executive Manager. Boot, background,
session, and local processes are specified through the appropriate segment
descriptors. (See Chapter 5 for a description of the types of processes.) Segments
adhere to the basic “look and feel” of the native GUI, as defined in the User
Interface Specification. Segments are registered and available through the online
library. Applications appear integrated to the user, but there may be duplication of
functionality and full interoperability is not guaranteed. Segments may be
successfully installed and removed through the COE installation tools. Database
segments are identified as unique or sharable according to their potential for
sharing.

Level 6: Intermediate DII Compliance Level. Segments utilize existing account
groups, and reuse one or more COE-component segments. Minor documented
differences may exist between the User Interface Specification and the segment's
GUI implementation. Use of non-standard Structured Query Language (SQL) in
database segments is documented and, where applicable, packaged in a separate
database segment.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-23

Level 7: Interoperable Compliance Level. Segments reuse COE-component
segments to ensure interoperability. These include COE-provided communications
interfaces, message parsers, database segments, track data elements, and logistics
services. All access is through published APIs with documented use of few, if any,
private APIs. Segments do not duplicate any functionality contained in COE-
component segments. The data objects contained within a database segment are
standardized according to DOD 8320 guidance.

Level 8: Full DII Compliance Level. Proposed new functionality is completely
integrated into the system (e.g., makes maximum possible use of COE services)
and is available via the Executive Manager. The segment is fully compliant with the
User Interface Specification and uses only published public APIs. The segment
does not duplicate any functionality contained elsewhere in the system whether as
part of the COE or as part of another mission application or database segment.

Bootstrap Compliance (Level 4) is required before a segment may be submitted to DISA
for evaluation as a prototype. Such segments will not be fielded nor accepted into the
online library. At DISA's discretion, segments which meet the criteria for Minimal DII
Compliance (Level 5) may be accepted into the online library, and installed at selected
sites as prototypes for user evaluation and feedback. Such segments will not be accepted
as fieldable products. Acceptance as an official DISA fieldable product requires
demonstration of Interoperable Compliance (Level 7) and a migration strategy to Full DII
Compliance (Level 8), unless the proposed segment is an interim product that is targeted
to be phased out in the near term.

The compliance categories and levels defined here are a natural outcome of developing a
reasonable approach to migrating legacy systems into the COE. The first step of
Category 1, covered by Levels 1-4, is to ensure that systems do not destructively interfere
with each other when located on the same LAN. Level 5 is sometimes called a “federation
of systems” in that systems are still maintained as “stovepipes,” but they can safely share
common hardware platform resources. Levels 6-8 complete the approach by reducing
functional duplication, promoting true data sharing, and making the system appear to the
user as if it were developed as a single system. The last three levels represent varying
degrees of integration from marginally acceptable (Level 6) to a truly integrated system
(Level 8). All 8 levels represent a progressively deeper level of interoperability.

The same compliance levels apply to SHADE databases, as well. The majority of the
SHADE issues in Levels 1-4 are concerned with proper use of the COTS database
management systems’ functionality and with not destructively accessing data belonging to
other databases. At Level 5, a database must identify those components of its schema
which are candidates for “sharing.” Levels 6-8 reduce and then eliminate data sets that are
redundant with information in shared and universal segments, including database design
modifications and data migration and cleansing to provide interoperability in both data
structure and content.

Compliance checking is done on a segment-by-segment basis according to the definitions
given here and through the checklist approach in Appendix B. The categories and levels

Fundamental COE Concepts

2-24 July 1997 DII COE I&RTS: Rev 3.0

described here are independent of where the segment fits into the system. That is, the same
definitions apply whether the segment is a COE-component segment or a mission-
application segment. However, it is sometimes necessary to compute the compliance level
of a collection of segments. This is called a composite compliance level. The remaining
subsections below describe how to compute a composite compliance value for an arbitrary
group of segments, for the COE itself, for a COE-based system, and for systems which
contain both COE and non-COE based computing platforms. A composite value is
required because otherwise a system is only as compliant as its least compliant segment
and the least compliant segment may be in the COE10 itself. Thus, the intent is to not
penalize systems for non-compliant components in the COE itself.

Strictly speaking, discussion of DII compliance requires qualification with a category
name, a compliance level, and whether compliance is being measured against a segment or
a collection of segments. Thus, it is correct to say that a particular segment is Category 1,
Level 4 compliant, but it could be confusing to omit the qualifier Category 1. Because of
widespread usage in the COE community, when a category is not stated, Categories 1 and
2 are assumed.11

The I&RTS expressly uses integer values rather than decimals or percentages to state DII
compliance. Expressing compliance as a percentage is both confusing and misleading. For
example, to state that a segment is 85% Level 6 compliant can be interpreted in many
ways. It could mean that 85% of the effort required to achieve Level 6 compliance has
been achieved, or that 85% of the functionality in the system is 85% Level 6 compliant.
However, it most likely means only that the segment successfully passes 85% of the
Level 6 criteria in Appendix B. Because of the difficulty in precisely interpreting the
intended meaning, only integer compliance values are allowed. Otherwise, it is difficult to
quantitatively compare two segments or systems if both claim to be 85% Level 6
compliant.

2.1.4.1 Compliance for an Arbitrary Group of Segments

Segments are often grouped together, as in a configuration definition. The composite
compliance level for an arbitrary collection of segments is the compliance level for the
least compliant segment.12 For example, suppose a group of four segments have
compliance levels of 5, 8, 3, and 8 respectively. Then the composite compliance level for
this group of four segments is 3.

10 The COE reference implementation contains software contributed by legacy systems. It may not be cost
effective to expend the effort to achieve full Level 8 compliance for some of these legacy contributions
because they are going to eventually be phased out. In the interim, systems that use these segments should
not be penalized for their lack of compliance.
11 The JTA states a requirement for a minimum of Level 5 compliance as does OSD directive. In both
cases, Category 1: Runtime Environment and Category 2: Style Guide are intended. The requirement is
levied on individual segments, and on COE-based systems.
12 This is how the compliance level for an aggregate segment is measured. (See Chapter 5 for the
definition of an aggregate segment.) The compliance level of an aggregate segment is the compliance
level of the least compliant segment in the aggregate.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-25

This approach to calculating composite compliance levels intentionally places a heavy
penalty on groups that have segments with low compliance levels and gives no “credit” if
there are segments with high compliance levels. An alternative approach would be to
average the levels, but because compliance is a direct measure of interoperability and
because artificially increasing the number of segments could have the misleading effect of
boosting the apparent level of compliance, this approach was rejected.

2.1.4.2 Compliance for the DII COE

Calculating the compliance level for the COE itself requires computing the composite
compliance level for 1) the COE kernel, and 2) for the Infrastructure Services and
Common Support Applications layers. As described in subsection 2.1.4.1, the composite
compliance level for each of these two groups of segments is the level of the least
compliant segment in the group.

Let Ck be the composite compliance level of the COE kernel. Let Cc be the composite
compliance level for the combined Infrastructure Services and Common Support
Applications segments. Then the composite compliance level for the DII COE (Cdii) is
given by the equation

Cdii = TRUNC([Ck + Cc]/2)

where TRUNC means to truncate the result to an integer value.

Consider an example. Assume the kernel has three segments with compliance levels 6, 8,
and 5. Assume there are four segments in the Infrastructure Services layer with
compliance levels 8, 8, 7, and 4. Lastly, assume that there are seven segments in the
Common Support Applications layer and all are level 8 compliant.

The composite compliance level for the combined Infrastructure Services and Common
Support Applications segments is the compliance level of the least compliant segment
(e.g., 4). Thus, the following gives the composite compliance level for the DII COE for
this example:

Ck = 5
Cc = 4
Cdii = TRUNC([5 + 4]/2) = TRUNC[9/2] = 4.

2.1.4.3 Compliance for a COE-Based System

The composite compliance for a COE-based system is computed in a manner similar to
that of computing the compliance for the DII COE. The approach is to compute the
composite compliance level for the mission-application segments and then factor in the
DII compliance. The computation here is valid only if every platform in the system is
COE-based. If there is a mixture, refer to subsection 2.1.4.4.

Fundamental COE Concepts

2-26 July 1997 DII COE I&RTS: Rev 3.0

Let Cma be the composite compliance level of all the mission applications in the system.
Let Cdii be the composite compliance level for the COE computed as described in
subsection 2.1.4.2. In computing Cdii, only those segments in the COE that are actually
used in the resulting system are considered. Then the system COE composite compliance
level, Cs, is computed as follows:

If Cma < Cdii, then Cs = TRUNC[(Cma + Cdii)/2],
else Cs = ROUND[(Cma + Cdii)/2]

where ROUND means to round the result to the nearest integer.

As an example, assume that a system has five mission applications with compliance levels
of 5, 7, 7, 8, and 8. Assume that the DII compliance level for the COE segments actually
used in the system is 6. Then the system composite compliance level is

Cma = 5
Cdii = 6
Cs = TRUNC[(5 + 6)/2] = 5.

If the least compliant segment (level 5) could be improved to reach level 7 with no change
in the COE, then the resulting system compliance level would be increased to 7.

2.1.4.4 Compliance in Mixed Systems

COE-based systems are likely to be created which include a mixture of COE-based and
non-COE based computing platforms. This may occur for several reasons:

1. because required functions in the target system have not yet migrated to the COE,
2. because of the need to interface with legacy systems that are not COE-based (e.g.,

mainframe applications),
3. because the COE is not presently available on a required platform, or
4. because the platform is highly specialized and is not appropriate for the COE.

An example of the latter situation is a receiver subsystem that contains dedicated hardware
for direct receiver control. A system built around such components is likely to use a
platform on which the COE is available for operator interaction and for receiver tasking,
and hence would be a mixed system.

Calculating the system composite compliance for all four situations is done just as with
COE-based systems described in subsection 2.1.4.3. In the first situation above, the
application that contains the required functionality can still be evaluated against the
compliance checklist and so arrive at a compliance level. The resulting system compliance
level will likely be very low.

Computation of the system composite compliance in the last three situations is equally
straightforward. Compliance is computed by ignoring the legacy platforms and platforms
for which the COE is not available.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-27

2.1.5 Interoperability of COE-Based Systems

This subsection describes interoperability in the context of the COE, and shows the
relationship between DII compliance levels and interoperability. But first, it is important to
distinguish between interfacing, integration, and interoperability. The three terms are
closely related and often confused, but they are distinct concepts. Proper understanding of
the interrelationship of these three terms makes it clear that the DII COE is an approach
towards integration that goes beyond simple interfacing or “peaceful coexistence” to true
interoperability.

2.1.5.1 Interfacing Systems

Interfacing is the ability of two systems to exchange data, typically by converting data to
an agreed-upon intermediate format. Interfacing should be viewed as one approach
towards achieving interoperability, or as a first-level approximation of interoperability. For
example, military systems frequently interface with one another by exchange of United
States Message Text Format (USMTF) messages. They are able to “interoperate” to the
extent that they can pass meaningful data to one another in an agreed-upon intermediate
USMTF format.

Interfacing provides a limited degree of interoperability but fails to fully satisfy “real-
world” operational requirements. Interfacing

· requires consistent interpretation of the agreed-upon format for data exchange;
· requires systems to stay in synch as the data exchange format changes;
· may result in loss of precision or other attributes (e.g., one system may process

latitude and longitude only in degrees and minutes, while another system may process
latitude and longitude down to decimal fractions of a second); and

· fails to ensure that applications interpret the exchanged data consistently.

For these reasons, successful “interfacing” is often limited to a specific version of the two
systems in question and may not survive when an upgrade to either system is performed.
Also note that standards profiles specify how interfacing can be accomplished.

2.1.5.2 System and Segment Integration

Integration is often used to refer to integration within a system or between systems, or to
refer to software and data integration. Within the context of this document, integration
refers to combining segments to create a system. Segment integration refers to the process
of ensuring that segments:

· work correctly within the COE runtime environment;
· do not adversely affect one another;
· conform to the standards and specifications described in this document;
· have been validated by the COE tools; and
· can be installed on top of the COE by the COE installation tools.

Fundamental COE Concepts

2-28 July 1997 DII COE I&RTS: Rev 3.0

Integration requires resolution of compatibility issues between components that are to be
interconnected. Integration attempts to allow sharing of a common resource (such as data)
without the need for intermediate translations from one format to another. Note that the
COE is a technique for achieving both software and data integration; it is the SHADE
component of the COE which the technique for assuring data integration. But the DII
COE goes further because COE/SHADE-type integration for software and data provides
true interoperability as a byproduct. The COE with full SHADE does not create any
technical roadblocks to interfacing, but does strongly encourage a deeper level of
integration that promotes true interoperability.

Integration of a segment with the COE is the responsibility of the segment developer.
Government integrators perform integration of the system as a whole and interoperability
testing.

2.1.5.3 Interoperability Levels

In the context of this document, interoperability refers to the ability of two systems to
exchange data:

· with no loss of precision or other attributes,
· in an unambiguous manner,
· in a format understood by and native to both systems, and
· in such a way that interpretation of the data is precisely the same.

There are two significant differences between interoperability and interfacing. The first is
that with interoperability the exchange of data is performed without the need to translate
to an intermediate format, such as a USMTF message format. This leads to the second
difference in that interoperable systems will produce exactly the same “answer” in the
presence of identical data. Systems that are interfaced will not necessarily do so because of
the potential loss of precision or data in the data exchange.

The concept of interoperability is explored in more detail in a study sponsored by the C4I
Surveillance and Reconnaissance (C4ISR) Integration Task Force Integrated
Architectures Panel. The draft document proposes four levels13 of interoperability which
are adopted by the I&RTS. The four proposed levels are as follows, listed in decreasing
order of interoperability:

Level A: Universal - Virtual C4I System. This level represents the ultimate goal
of full interoperability. Universal interoperability is characterized by the ability to
globally share integrated information in a distributed information space. Another
way to view Universal interoperability is as a way to globally share systems.

13 The draft document also proposes a mapping between the I&RTS compliance levels and interoperability
levels. However, the mapping fails to properly account for integration when identical software is used for
common functions.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-29

Level B: Advanced - Integrated Systems. The Advanced level of interoperability
is characterized by shared data between applications, including shared data
displays, and information exchange through a common data model. This level
provides for sharing of information in a distributed but localized environment and
for sharing of applications.

Level C: Intermediate - Distributed Systems. This level is characterized by a
client/server environment with standardized interfaces and distributed computing
services that allow for exchange of heterogeneous data (e.g., maps with overlays,
annotated images), and advanced collaboration. This level of interoperability is
achievable with implementation of “cut and paste” between applications, through
World-Wide-Web technology, and through basic use of DII COE features.

Level D: Basic - Discrete Systems Interaction. A primitive level of
interoperability characterized by peer-to-peer connected systems that allows basic
exchange of homogenous data (e.g., email, formatted messages) and allows for
basic collaboration. This level of interoperability is achievable by interfacing
techniques described above and by use of standard office automation products that
provide data import/export functions for handling data from another product.

2.1.5.4 Mapping Interoperability and Compliance Levels

Note that progressing from one level of interoperability to a higher one requires a deeper
degree of integration, more commonality in the infrastructure building blocks, and a
greater ability to share data and information. These are precisely the requirements for
progressing to deeper levels of DII compliance, and can be achieved through the use of
COE/SHADE facilities. When two operators are using exactly the same system, or two
systems which are nearly identical, they achieve the highest possible degree of
interoperability. The more software reuse is achieved, the greater the degree of
interoperability. Thus, there is a direct relationship between integration, reuse, DII
compliance levels, and interoperability.

Integration alone does not imply interoperability; it only provides a level of assurance that
the system will work as designed. However, when COE-based systems are integrated
together, interoperability is achieved as a byproduct because common software is used for
common functions. The degree to which interoperability is achievable is dependent upon
the degree to which the two systems are DII-compliant. Universal Interoperability can
only be achieved when systems use exactly the same software to perform identical
functions and use the same database segments for required data elements. Implementation
of agreed-upon paper standards is not itself sufficient.

Table 2-1 shows a mapping between DII compliance levels and interoperability levels. The
transition and correspondence between levels is not sharp, as the table suggests because
the purpose and focus are different for the two different types of levels.

Fundamental COE Concepts

2-30 July 1997 DII COE I&RTS: Rev 3.0

DII Compliance Levels Interoperability Levels
1. Standards Basic
2. Network Basic
3. Platform Basic, Intermediate
4. Bootstrap Basic, Intermediate
5. Minimal Basic, Intermediate
6. Intermediate Intermediate
7. Interoperable Intermediate, Advanced, Universal
8. Full Advanced, Universal

Table 2-1: Compliance and Interoperability Levels

2.1.6 Principles for Selecting COE Components

Selection of the specific software modules that comprise the COE determine which
mission domain(s) can be addressed by a particular COE reference implementation. But
selection of COE components is not arbitrary: it is driven by a number of important
architectural and programmatic principles. First, there is a determination of what functions
the COE is required to perform, then there is a set of criteria for selecting software
components which perform the required functions. A function is part of the COE if it
meets one or more of the following criteria:

1. The function is part of the minimum software required to establish an operating
environment context. This is normally provided by COTS products and includes the
operating system, windowing software, security software, and networking software.

2. The function is required to establish basic data flow through the system. To be useful,

a system must have a means for communicating with the external world. To be
efficient, consistent, and robust, a system must also have standard techniques for
managing data flow internal to the system.

3. The function is required to ensure interoperability. Standards alone cannot guarantee

interoperability, but using common software for common functions and using shared
and universal database segments with DOD 8320 standard data objects comes much
closer. As an example from the GCCS mission domain, a USMTF message parser is
part of the COE because interoperability cannot be achieved if two different message
parsers implement a different set of assumptions about the USMTF message
specification or use a different specification revision.

4. The function is of such general utility that if rewritten it constitutes appreciable

duplicative effort. This includes printer services, an alerts service for disseminating
alerts, and a desktop environment for launching operator-initiated processes.

Subsections 2.1.1 and 2.1.2 detail the functions currently defined to be in the DII COE.
The first three criteria listed above are technical in nature because they dictate from an

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 2-31

architectural perspective what software must be contained in the COE for a given mission
domain. The fourth criteria, however, is more programmatic in nature because it is often a
tradeoff between the cost of modifying a legacy system to remove duplication versus the
cost of maintaining duplicative code, the cost of potentially requiring additional hardware
resources because of duplication, and the cost of operator training when there are different
ways to accomplish the same action. DII compliance requires that there be no duplication
of functions in the first three criteria but some flexibility is possible for the fourth.

There are two frequently voiced concerns about COE services:

1. if a module becomes part of the COE, it cannot be easily changed or customized; and
2. the larger the COE is, the more inflexible and the poorer the performance of the

resulting system.

The first statement is partially true and is so by design. It is essential to perform careful
configuration management of COE components, and they must be changed only in a
controlled way in response to formally reported problems. Stability of the COE is crucial
to the system, so modifications must be done carefully, deliberately, and at a slower pace
than changes in non-COE routines. But just because changes are controlled does not mean
that the COE routines cannot be customized. Ongoing work in the COE is to devise and
refine techniques to “open up the architecture” to allow applications to customize COE
components in ways that do not violate COE principles and do not adversely impact other
developers using COE services.

The second statement is a misunderstanding of the COE architecture and concept. Unlike
many systems, the COE is not designed as a single monolithic process, but is instead
designed as a collection of relatively small processes. While a small number of these are
loaded into memory as background processes, most are loaded into memory on demand in
response to operator actions (e.g., edit a file, display a parts inventory) and only for the
amount of time required for them to perform their task. This approach offers considerable
flexibility because it limits the number of background processes required. Except for cases
where segments require adding new background processes, adding new segments does not
adversely impact performance. The price paid is a small amount of overhead required to
load functions on demand, but this is generally negligible because the overhead is small
and comes usually in response to an operator request to bring up a display that must
respond only at human speeds.

A COE-component segment is not necessarily installed on every target platform or as part
of every COE-based system. A COE-component segment can be omitted from the system
or installation if:

· Any remaining COE-component segments do not require the functionality provided
by the segment. For example, the COE provides a number of message parsers for
processing military message formats. But systems such as ECPN have no need to
handle military message formats and therefore such parsers need not be included in the
ECPN system. However, in many cases there is no real advantage to deleting a COE-
component segment because it will not be activated unless required and the amount of

Fundamental COE Concepts

2-32 July 1997 DII COE I&RTS: Rev 3.0

disk space taken up is small. Eliminating the function will increase the burden of
configuration management problems more than leaving the function in the system.

· The functionality provided by the segment is not required by any remaining COE-

component segments. Selection of certain functions within the COE automatically
dictates the inclusion of segments on which those functions depend. This is not the
same as saying that the COE is not modular. On the contrary, it is an observation that
inclusion of a higher-level function requires inclusion of all lower-level routines used
to build the function. This is a direct consequence of modularity, not a contravention.

· The functionality provided by the COE segment is not duplicated by another segment.

A common pitfall to avoid is omitting a COE component because its functionality is
available through some other means. The problem with this approach is that a common
“look and feel” and consistent operation are no longer preserved between applications,
and interoperability may be reduced.

Omission of COE-component segments that are not required is done automatically by the
COE installation software.

Account Groups and Profiles

DII COE I&RTS: Rev 3.0 July 1997 2-33

2.2 Account Groups and Profiles

In a typical operating system, users are assigned individual login accounts. Configuration
files are created to establish user preferences and a runtime environment context. In the
UNIX operating system, configuration files (for example, .cshrc) establish the runtime
environment context for the user. COTS products such as CDE also have configuration
files that contribute to the runtime environment context as well. These configuration files
must be set up and established for each user of the system. The COE provides standard
versions of the required “dot” files. These should be used when creating account groups
because they standardize the operation of the system across all account groups, and
because the COE-provided files demonstrate how to support dynamic profile switching.

An account group segment is a template used within the COE for setting up individual
login accounts and a required runtime environment context. Account groups contain
template files for specifying items such as the functions to be made available to operators
and global default preferences such as color selections for window borders.14 Account
groups are described further in Chapter 5 of this document.

Account groups can also be used to perform a first-level division of operators according
to how they will use the system. This technique is used in the COE to identify at least five
distinct account groups:

· Privileged Operator (e.g., root) Accounts,
· System Administrator Accounts,
· Security Administrator Accounts,
· Database Administrator Accounts, and
· Non-Privileged Operator Accounts.

Other account groups may exist for specialized system requirements, such as providing a
character-based interface, but all account groups follow the same rules. Within an account
group, subsets of the available functionality can be created. These subsets are called
profiles. An operator may participate in multiple account groups with multiple profiles,
and can switch from one profile to another without the need to log out and log in again.
An operator may also select multiple actives profiles to provide an operational
environment from a collection of account groups. For example, assuming the operator has
appropriate permissions, an operator may combine a profile based on the System
Administrator account group with a profile based on a Database Administrator account
group.

Figure 2-6 shows the hierarchical relationship among account groups, profiles, and
individual users. It is intended to convey several points.

· Multiple profiles may be assigned to an account group, but a particular profile may be
assigned to only one account group. Assuming the operator has proper permissions,

14 The user may modify preferences, but the Account Group establishes the initial, default settings.

Account Groups and Profiles

2-34 July 1997 DII COE I&RTS: Rev 3.0

multiple profiles may be selected at one time to give the operator features from
multiple account groups at the same time.

· Multiple operators may be assigned to the same profile. For example, operator Op4

and operator Opn are shown assigned to the same profile within the Non-Privileged
Operator account group.

· Operators may be assigned to multiple profiles either within the same account group,

or across account groups. Opn is assigned to three profiles within the Non-Privileged
Operator account group. Op3 is assigned to a profile in the System Admin, Security
Admin, and Database Admin account groups.

· Not only can an operator be assigned to multiple profiles, but multiple profiles may be

active at a time. The operator may switch between profiles without the need to log in
and out. (Optionally, a system can be configured to permit a single profile at one time.)

· The COE allows profiles to be locked. That is, if Op4 and Opn are assigned to the

same set of profiles, the system can be configured so that if Op4 is in a specific profile
first, then Opn is locked out from using that profile until Op4 is no longer using it.

System (GCCS,GCSS, ECPN, etc.)

System
Admin

Non-Privileged
Operator

Database
Admin

Security
Adminroot

Profiles Profiles Profiles Profiles

Op1 OpnOp2 Op3 Op4 ...

Account
Groups

Sets of
Profiles

Operators

Figure 2-6: Account Groups, Profiles, and Users

2.2.1 Privileged User Accounts

Most operating systems provide a privileged “super user” account. Both UNIX and
Windows NT have the concept of a privileged account. Privileged accounts are normally
restricted to knowledgeable systems administrators because serious damage can be done
to the system if they are used improperly. Security requirements also dictate careful
control and auditing of actions performed when operating as a privileged user.

Account Groups and Profiles

DII COE I&RTS: Rev 3.0 July 1997 2-35

The COE design philosophy is to not require the use of a privileged user account for
normal operator activities. Certain processes cannot be performed without superuser
privileges, but such privileges should be given to the process, not the user, and only for
the period of time necessary to perform the required action. Root-level access need not be
provided to the user for such actions: indeed, it should not be provided.

Normal operation does not require a command-line-level access, especially to root.
Command-line access for any COE segment is expressly prohibited unless the DISA DII
COE Chief Engineer grants prior approval. However, a privileged user account is
preserved in the system for use by trusted processes, for unusual system administration
tasks or installations, and for abnormal situations where “all else fails.”

2.2.2 Security Administrator Accounts

Security in the COE is implemented through a collection of security services and trusted
applications. One such trusted application is the Security Administrator application that
allows a Security Administrator to monitor and manage security. Precise functionality of
the Security Services provided is vendor-dependent because vendors have taken different
approaches. Security features in Windows NT and UNIX are significantly different, but
even within UNIX, security features vary considerably from one vendor to another.

The Security Services are loaded as part of the COE kernel. (The precise sequence for
loading security software is vendor-dependent.) The Security Administrator application is
designed to be made available to only a restricted group of operators. Available functions
include the following:

· Ability to create individual login accounts
· Ability to create defined operator profiles, including granting database privileges as

established by the Database Administrator (DBA)
· Ability to create/modify database user accounts
· Ability to assign read, write, and modify data permissions
· Ability to customize menus by operator profile.

2.2.3 System Administrator Accounts

The System Administrator Account Group is a specialized collection of functions that
allow an operator to perform routine maintenance operations. This software is designed to
be made available to a restricted group of operators. It is loaded as part of the COE kernel
because it contains the software required to load segments. Functionality provided
includes:

Account Groups and Profiles

2-36 July 1997 DII COE I&RTS: Rev 3.0

· Ability to format floppy disks
· Ability to install and to remove segments
· Ability to set platform name and IP address
· Ability to install and configure printers
· Ability to create and to restore backup tapes
· Ability to shutdown and to reboot the system
· Ability to configure network host tables
· Ability to configure and manage the network.

2.2.4 Database Administrator Accounts

The Database Administrator Account Group is to be used by those individuals responsible
for performing routine database maintenance activities such as backups, archives, and
reloads. The specific capabilities are dependent upon which commercial relational database
software is in use and upon tools provided with these commercial products.

Functions included within this account group are:

· Ability to archive and restore database tables
· Ability to import and export database entries
· Ability to create/modify database user accounts
· Ability to checkpoint and journal database transactions.

Note: User account management is normally done as part of a Security
Administrator account. However, the COE provides the ability to
modify the database portion of already created user accounts via
the Database Administrator accounts as well. Only those user
account items related to database administration can be modified
by the database administrator.

2.2.5 Operator Accounts

Most operators will not require, nor will site administrators grant access to, capabilities
described in the previous subsections. Most system users will be performing mission-
specific tasks such as creating and disseminating Air Tasking Orders (ATOs), preparing
briefing slides, performing ad hoc queries of the database, participating in collaborative
planning, etc. The precise features available depend upon which mission-application
segments have been loaded and the profile assigned to the operator.

2.2.6 Character-Based Interface Accounts

Certain legacy systems require the ability to provide a character-based interface to the
user. This is typically required for remote users where the communications bandwidth is
too low to support a GUI-based application or because the user’s hardware does not
support graphics (e.g., VT100 terminals).

Account Groups and Profiles

DII COE I&RTS: Rev 3.0 July 1997 2-37

The COE provides a character-based account group for such situations. These may have
profiles defined just as with any other account group. When the user logs in, a menu of
options, such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:

is presented to the user.

Character-based account groups are restricted in the sense that a user account is either
character-based or it is not. If an operator has access to a terminal that supports a GUI
interface and to another that does not, the operator must have two separate login
accounts: one which uses character-based profiles and one which does not.

Site Configurations

2-38 July 1997 DII COE I&RTS: Rev 3.0

2.3 Site Configurations

Figure 2-7 is a simplified notional LAN diagram for a typical COE-based system. The
architecture consists of a 3-tier client/server environment incorporating data servers,
application servers, and platforms interconnected on a LAN/WAN. The division shown
separates data (data servers), functions (application servers), and presentation (platform).
System components are interconnected on a LAN/WAN through direct connection to a
LAN, through subnets connected over routers, through dedicated lines, or via dial-up
through a communications server. Cryptologic equipment may be installed to secure
communications over non-secure lines as shown. Remotes with limited bandwidth will not
generally have access to the complete suite of mission applications available to local users.

Applications
Server

Remote
Lan

Backbone LAN

Data Server

Applications
Server

DISNSu
bn

et
 L

A
N

Comms
Server

Router

KG/MUX

Windows Workstations

Unix Workstations

Figure 2-7: DII Notional LAN Architecture

In a typical installation, there will be one or more database servers and several application
servers. The database server is the repository for all databases and may be replicated at
strategic places in the LAN architecture to improve performance and to balance loading.
COE services ensure that replicated databases stay synchronized.

Site Configurations

DII COE I&RTS: Rev 3.0 July 1997 2-39

A typical installation will often include other servers that are not shown in the diagram. A
Web server connected to the outside world through a firewall allows sites to take
advantage of Web technologies for collaborative planning purposes. As described in a later
chapter, the COE also provides facilities that allow developers to create applications that
use the Web for accessing applications and data.

Network management is greatly simplified if a domain name server is created and if there
is a server for management of user accounts and profiles. Segment installation is simplified
by designating servers to load platforms across the LAN rather than individually from
magnetic media. This approach also simplifies software distribution because when
software updates are received, they can be tested in isolation, then loaded onto a segment
server for distribution to affected platforms. Combined with configuration definitions, the
COE provides powerful tools for managing software installation and distribution.

The COE supports both “network-centric” and “platform-centric” LAN management.
Network-centric refers to the ability to centrally manage network resources (e.g., user
accounts, profiles, software installation). In keeping with COE principles, centralized
management can be done from any platform (subject to security considerations) with
infrastructure services responsible for effecting the changes across the network. Platform-
centric refers to the ability to distribute network management. The choice of centralized
versus distributed is a preference which may vary across distributions or sites.

Installing COE-Based Systems

2-40 July 1997 DII COE I&RTS: Rev 3.0

2.4 Installing COE-Based Systems

Figure 2-8 is a notional depiction of the installation process. (It should not be interpreted
too literally since vendor-specific loading instructions may require slight alterations in the
loading sequence shown.) First, the operating system, windowing environment, and any
necessary patches are loaded as per vendor instructions. Then, the COE Security
Administration software and System Administration software are copied onto disk with
the equivalent of a UNIX “tar” command. The segment installation tool is copied onto
disk as part of installing the System Administration software and installation of the System
Administration software is done in such a way as to also create a System Administrator
operator account. This completes installation of the COE kernel. Next, the operator logs
in as a system administrator, invokes the segment installation tool, and selects the
remaining COE segments for installation. Finally, any remaining mission-specific segments
are selected and loaded.

This installation approach has several advantages. It greatly simplifies the installation
process by handling all vendor-unique issues first (e.g., loading the operating system and
patches). It guarantees a standard, known starting configuration for all platforms
regardless of how they will be used. It allows all remaining segments to be loaded in a
standard way regardless of the hardware platform or mission application, thus simplifying
system administration. Through the COE, it allows segments to extend the base
environment as required as they are loaded.

Figure 2-8 describes the general flow for installing a system, which can be accomplished in
either a “pull” or a “push”15 mode. In pull mode, installation is done locally from the target
platform. In push mode, installation is performed remotely onto the target platform from a
different platform.

Installation may be accomplished in several ways:

· directly from distribution media (e.g., tape, CDROM),
· locally from distribution media mounted on a different platform,
· across the network from a segment server, or
· through a Web browser interface from a centralized segment server.

The distribution media and servers may contain executables for multiple hardware
platforms. The segment installation tool ensures that only those executables which are
compatible with the target platform (e.g., NT, Solaris, Digital Equipment Corporation
[DEC]) are selectable and hence installable.

15 Installation in a “push” mode requires that the COE kernel already be installed on the target machine
and that the target machine already be accessible from the network.

Installing COE-Based Systems

DII COE I&RTS: Rev 3.0 July 1997 2-41

* Vendor-Specific Instructions

COE Kernel

Remaining System

Stop

Start

*Install OS

*Install Windowing Environment

*Install OS & Windows Patches

Install Security & System Admin S/W
(via “tar” command or equivalent)

Login as System Administrator

Install Remaining COE segments
(via Segment Installer tool)

Install Other Segments
(via Segment Installer tool by

selecting Configuration Definitions
or individual segments)

Figure 2-8: Installing a COE-Based System

Supported Configurations

2-42 July 1997 DII COE I&RTS: Rev 3.0

2.5 Supported Configurations

The DII COE is an open architecture and as such is not tied to a specific hardware
platform. It uses POSIX-compliant operating systems and industry standards such as
X Windows, Motif, and NT. In actual practice, POSIX compliance and industry standards
have not progressed to the point where verification that software works in one
hardware/software configuration is a guarantee that it will work in another. COTS
vendors do not necessarily provide backwards compatibility with subsequent releases, and
in fact much of the effort consumed in porting the COE from one configuration to another
is to account for lack of compatibility between vendors or between vendor releases. Thus,
what hardware/software configurations to support is more an issue of testing and life-cycle
maintenance than it is one of “openness” or software portability.

COE reference implementations exist for a number of platforms. The list of supported
hardware and software components is growing as the COE and COE-based systems
evolve to meet operational requirements. Appendix A lists the current DISA-supported
COE configurations. It also describes a DISA “self-certification” program that allows
vendors or services to receive copies of the COE kernel in order to port it to platforms or
operating systems not currently supported by DISA. DISA will test the ported kernel to
ensure it meets COE requirements and will issue a certification for the specific platform.
Responsibility for supporting the ported COE on the new platform is the responsibility of
the vendor/service that has funded the effort.

Appendix A will be updated as required to reflect new hardware/software configurations.
Note that not all of the COTS products listed in Appendix A are part of the COE kernel
and thus are not required for every platform. Refer to the DISA DII COE Chief Engineer
for requirements for other platform or COTS software versions, or for an updated list of
supported vendor products.

Specifying precise hardware requirements in terms of memory, disk space, etc. is a
function of whether the platform is a shared data server, an application server, or a client
platform, and whether the platform is standalone or on a network with other COE-based
platforms. Consult the DISA DII COE Chief Engineer for hardware configuration options.

Development Process Overview

DII COE I&RTS: Rev 3.0 July 1997 3-1

3. Development Process Overview

This chapter describes the development process in more detail. A powerful feature of the
overall development process is the concept of “automated integration.” Automated
integration means that automated tools are used to combine and load segments, make
environmental modifications requested by segments, make newly loaded segments
available to authorized users, and identify places where segments conflict with each other.
Traditional system integration then becomes primarily a task of loading and testing
segments, although traditional functional testing must still be performed to ensure
interoperability and performance of the resulting system. Automated integration has the
advantage that traditional integration tasks are pushed as far down to the developer level
as possible, and then validated as system integration is performed.

Prior to submitting a component to DISA, a developer must

· package the component as a segment,
· demonstrate DII compliance through tools and checklists,
· test the segment in isolation with the COE,
· provide required segment documentation, and
· demonstrate the segment operating within the COE.

The DISA DII COE Software Support Activity (SSA) enters the segment into the online
library for configuration management purposes and confirms DII compliance by running
the same suite of tools as the developer. The SSA then tests interaction between segments
and the impact on performance, memory utilization, etc. Since segments typically can only
interact through the COE, the task is greatly simplified and the need for human
intervention in the process is minimized.

An automated integration approach is a practical necessity. Not only do different services
and agencies contribute segments, but individual segments are created by a large body of
different developers. Traditional integration approaches rapidly break down with the need
to communicate to such a large number of people while the costs incurred to resolve inter-
module conflicts at system integration time become prohibitive.

This chapter begins with a consistent approach to version numbering, followed by a
detailed look at the development phases. The chapter ends with some special
considerations for how to migrate legacy systems rather than developing from scratch.
Because of the special importance of the online library, Chapter 10 is devoted to it and its
features. For the present chapter, it is sufficient to note that there is a configuration
management repository for segments.

 Note: Integration and testing of a segment within the COE, and DII
compliance are the responsibility of the segment developer.
Government directed integrators verify DII compliance, integrate
the system as a whole, and perform interoperability testing.

Version Numbering

3-2 July 1997 DII COE I&RTS: Rev 3.0

3.1 Version Numbering

The COE concept requires the ability for segments to state dependencies upon or conflicts
with other segments. At least four types of segment dependencies/conflicts can exist.

1. One segment may require that another segment also be loaded in order to operate.
2. One segment may require another, but the dependency is version-specific.
3. One segment may have a conflict with another segment so that both cannot be present

in the system at the same time.
4. One segment may have a conflict with another, but the conflict may be version-

specific.

A consistent approach to version numbering is thus a mandated feature of the COE
standard so that the COE tools can detect and enforce segment dependencies, and can
detect and avoid segment conflicts. Version numbers are applied to all segments and all
segment patches.

COE-based systems consist of a collection of segments, each with its own individual
version number. When a version number is applied to a COE-based system, the version
number refers to the entire system as a whole, not the version for each individual mission
application or segment, or for the COE version. While this may seem confusing at first, it
is a practical necessity and is consistent with commercial practice. For example, one refers
to the version of Microsoft Windows (analogous to the DII COE) as well as individual
applications like Word or Excel (analogous to mission applications like GCCS Status of
Resources and Training System [GSORTS] or to COTS products like Netscape).
Microsoft packages several of their office automation products into Microsoft Office
(analogous to GCCS) and gives the collection a version number, even though it is
composed of individual products, each having its own version number. The Microsoft
Office package is advertised as requiring a specific version of Windows to operate.

DII compliance mandates adherence to the version numbering scheme outlined in this
section. Version numbers are frequently tied to the signature level required to authorize a
product release. Hence they have programmatic importance as well as technical
importance for distinguishing between segment upgrades.

3.1.1 Segment Version Numbers

Segment version numbers consist of a sequence of 4 integers, separated by decimal points,
in the form

a.b.c.d

where each of the integers has a specific meaning. The first integer is a major release
number and indicates a significant change in the architecture or operation of the segment.
Compatibility libraries will be provided if necessary to preserve backwards compatibility.
The second integer indicates a minor release in which new features are added to the
segment, but the fundamental segment architecture remains unchanged. A minor release

Version Numbering

DII COE I&RTS: Rev 3.0 July 1997 3-3

may necessitate relinking to take advantage of updated API libraries, but APIs are
preserved at the source code level except possibly on a documented basis with the explicit
approval of the DISA CCB. The third integer is a maintenance release number. New
features may be added to the segment, but the emphasis is on optimizations, feature
enhancements, or modifications to improve stability and usability. APIs are preserved and
do not generally require segments to recompile or relink during successive releases. The
fourth integer is a developer release number.

For COE segments, the first three integers are assigned by DISA. For mission-application
segments in a COE-based system such as GCCS, the program manager assigns the first
three integers. In both cases, the final integer is reserved for developers. The fourth
integer is updated to keep track of successive releases during the integration process.

Version number integers are always incremented, never decremented, to indicate later
releases of a segment. This scheme provides a readily apparent method of comparing
successive releases of a segment. For example, a segment with version number 2.1.6.1 is a
newer version than 2.1.0.5. Moreover, according to the scheme outlined, APIs are
preserved. Segments using version 2.1.0.5 can usually be expected to work without any
modification when loaded on a system using the 2.1.6.1 version.

When specifying version dependencies, this scheme also allows segments to indicate the
degree to which they are version sensitive. For example, suppose Segment A requires use
of Segment B. Segment A may indicate that it requires Segment B, version 2.3 indicating
that any maintenance release of version 2.3 (e.g., 2.3.2.0, 2.3.1.2) is acceptable. The same
approach works for specifying segment conflicts.

Note: It is a violation of the COE to fail to increment version numbers
between subsequent segment releases. This applies to all
segments whether they are COTS segments, COE-component
segments, or mission-application segments. This requirement to
update version numbers between subsequent releases is a matter
of good Configuration Management practice.

3.1.2 COTS Version Numbers

COTS products will typically already have version numbers assigned to them, but the
convention used is vendor-specific. This makes it difficult to make meaningful version
comparisons in the same sense as in the previous subsection. A further complication is that
COTS products must often be configured before they can be properly utilized in a COE-
based system. For this reason, COTS segments are also assigned version numbers.

A COTS version number consists of a primary and secondary version number separated
by the ‘/’ character. The primary version number follows the same convention described in
the previous subsection, while the secondary version number is the version number
assigned by the vendor and can be any alphanumeric string. Comparisons and dependency
specifications are always performed using only the primary version number. Secondary

Version Numbering

3-4 July 1997 DII COE I&RTS: Rev 3.0

version numbers should be specified because they may be used for other purposes such as
supporting automated license management.

For example, the DII COE requires an increase in the amount of shared memory
configured in the vendor-supplied Solaris 2.5 UNIX Operating System. A primary version
number, such as 2.1.3.6, is assigned so that the operating system is referred to as version
2.1.3.6/SOL-2.5. Similarly, the X11R5 version of an X Windows server might have a
version number assigned such as 2.3.0.4/X11R5.

COE-based systems are presently composed of segments contributed from ongoing
programs that may already have an established convention for version numbering. A
secondary version number may also be attached to such segments. As with COTS
segments, only the primary version number is actually used within the COE.

3.1.3 Patch Version Numbers

Patches1 are indicated by appending the letter ‘P’ and a single number to the primary
version number. For example, patch 12 to version 2.1.3.5 of a segment would be
designated as version 2.1.3.5P12. Patch 4 to the Solaris Operating System example in the
previous subsection would be designated as 2.1.3.6P4/SOL-2.5.

3.1.4 COE Version Number

The DII COE itself is composed of a collection of segments. Each of these has its own
version number, but it is convenient to track the COE as a single entity. For this reason,
DISA assigns a single version number2 to refer to a specific release of the collection of
segments in the COE. Mission applications may thus state dependencies on the COE as a
whole rather than individual segments within the COE.

It is possible that some mission applications need to state a dependency on a particular
segment within the COE. This should normally not be required, but is permitted.

3.1.5 System Version Number

A COE-based system is comprised of COE segments, and mission-application segments.
Each of these segments will have their own individual version, but it is usually more
convenient to the end user to view the system as a whole rather than as a collection of
individual pieces. Thus, it is advisable to assign a single version number to the whole to
refer to the system rather than confusing the end user with a list of segments and their
associated version numbers. Identification of the system version number is the
responsibility of the cognizant DOD program manager. It is also the responsibility of the
cognizant DOD program manager to track the track the segment versions that are to be

1 A patch in this context is the total replacement of one or more files, not the replacement of a subset of a
file or a section of memory. The files being replaced may be software or data.
2 The version number of the COE must not be confused with the version number for the I&RTS document.
The two are not related. One is the version number of a delivered software product while the other is the
version number of a specification document.

Version Numbering

DII COE I&RTS: Rev 3.0 July 1997 3-5

associated with a particular system release. The version number should be that identified in
the main operator account group (e.g., GCCS, ECPN, GCSS).

For example, suppose that the system GCCS, version 3.2, is to be comprised of the
following segments or groups of segments:

· DII COE, version 4.0
· JOPES, version 3.2.1
· GSORTS, version 5.6.3.2
· Scheduling and Movement (S&M), version 1.0.3

Then the cognizant DOD program manager should

1. enter “3.2.0.0” as the version number in the GCCS account group (see Chapter 5 for
more information on account groups and how to enter a version number); and

2. in accordance with good Configuration Management practices, maintain a list of the
exact segments and versions that comprise this GCCS system release.

Note: The COE provides an environment variable, COE_SYS_NAME,
that the account group must set to provide the system name. See
Chapter 5 for more details.

3.1.6 Configuration Definition Version Numbers

As described in Chapter 2, the COE provides configuration definitions to simplify
management and installation of COE-based systems. Version numbers should also be
assigned to properly track changes to configuration definitions. Refer to the appropriate
programmer’s guide for details on assigning version numbers to configuration definitions.

Process Flowchart

3-6 July 1997 DII COE I&RTS: Rev 3.0

3.2 Process Flowchart

Figure 3-1 is a representative flowchart of the development process, beginning with
registering a segment to be developed and ending with ultimately installing the segment at
an operational site. The major development phases are delineated by dashed lines in the
figure and correspond to the subsections that follow. This process flow is the same for all
segments, including patch segments. As can be seen, the process is indeed largely
automated.

By necessity, the figure is abbreviated and does not show several key elements of the
development process such as error tracking and reporting, a configuration control board,
DISA architecture groups, or configuration management and quality assurance. Each of
the elements is strongly implied by Figure 3-1, but their description is beyond the scope of
this document. Contact the DII COE Chief Engineer for more information on related
elements in the development process.

At several places in Figure 3-1, segments are added to the online library. Segments are
compressed and encrypted to reduce disk space and for added security. Segments are also
encrypted and compressed when they are transmitted electronically across the network.
These actions are performed automatically and are transparent to the user.

While electronic transmission of segments across the network is the preferred approach, it
is not possible in certain cases. It is not practical to transmit the operating system,
X Windows, or Motif across the network due to licensing restrictions and their size. Other
segments, especially the data segments providing fill for database segments, may be too
large to send electronically or may have a security classification that requires special
handling and tracking. Figure 3-1 should be understood with this in mind. Electronic
transfer is performed when feasible, but an alternate route using tape or other media is
used as well when required.

Figure 3-1 also shows several places, especially in the Segment Submission phase, where a
“Notify” action occurs. This is an electronic notification of status to the segment
developer, to the development community, or to the user community. The subsections
below describe notifications in more detail, but obviously notifications of status are sent
only to the cognizant parties, not necessarily to the entire community. Notification is
accomplished by email, WWW, newsgroups, or “paper” as appropriate.

The very nature of COE-based systems dictates that security measures be taken to prevent
unauthorized disclosure or access to sensitive information, including project status or
system problem reports. For this reason, access to software and project information is
divided between Internet and SIPRNET with firewalls to restrict access. This level of
detail is not necessary for the overview presented in this chapter and has been omitted
from Figure 3-1.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 3-7

No

Online
Repository

Notify

No

Yes

Yes

Segment
Registration

Segment
Development

A

Pass

Fail

Register Segment

Start

Load & Config COE

Download Segments

Valid
COE?

Write & Unit
Test Code

Create Segment
Structures

Valid
Seg?

TestInstall
and

Compliance
Check

TestRemove

B

Fail

Pass

Segment
Submission

A

MakeInstall

System
Test

Test Seg APIs

mkSubmitTar

submit

C

B

Figure 3-1: Development Process Overview

Process Flowchart

3-8 July 1997 DII COE I&RTS: Rev 3.0

Operational
Site

Online
Repository

Online
Repository

Notify Accepted

Segment
Installation

Create Distrib
Media

Remote
Install

Stop

D

Segment
Accepted

Notify Received

Pass

Fail Notify
Rejected

Online
Repository

Notify Submitted

Fail
Notify
Rejected

Pass

Pass

Fail

C

Receive
Segment

Valid
Seg?

Submit to CM
Online Repository

Test Seg
In Isolation

Results?

Online
Repository

Notify Pass & Compliance Level

Test Advance

Create Config
Definition

System
Test

D

Assign Compliance Level

Figure 3-1: Development Process Overview (cont.)

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 3-9

The remaining subsections discuss the process overview in detail. The flow is the same for
software segments and for database segments, but there are some additional nuances for
database segments. Thus, subsection 3.2.1 describes the process regardless of segment
type, while subsection 3.2.2 has additional information for database segments.

3.2.1 Processes Applicable to All Segments

Segment development is straightforward. It essentially requires registering the segment to
make sure it will not conflict with other segment developers, create the code, structure the
product as a segment, and then test it.

The process in Figure 3-1 is a generic flowchart for any type of segment. The I&RTS
requires that all COE-component segments be submitted to the DISA DII COE SSA for
test and configuration management. Mission-application segments must be submitted to
the SSA identified by the cognizant DOD program manager. DISA3 requires all mission-
application segments for DISA Joint Interoperability and Engineering Organization (JIEO)
systems (e.g., GCCS, GCSS, ECPN) to be submitted to the same SSA as for COE-
component segments.

3.2.1.1 Segment Registration

Segment Registration is the entry point into the development process. Its purpose is to
collect information about the segment for publication in a segment catalog. Perhaps the
most difficult part of maintaining a software repository is simply knowing what capabilities
exist. This is the purpose of maintaining a DII segment catalog. The segment catalog is
available online through a HyperText Markup Language (HTML) browser and contains
information provided by developers in a segment registration form. Keyword searches can
be performed on the catalog by developers to identify reusable segments or by operational
sites to find new mission applications.

The segment registration form includes, but is not limited to, the following information:

· segment name
· segment prefix
· segment directory name
· segment type (software, data, COE component, etc.)
· system resources (e.g., port assignments, UIDs requested, RPC addresses requested)
· estimated memory required by the segment
· estimated disk storage requirements
· list of boot and background processes (see Chapter 5)

3 Program managers who do not elect to use the DISA DII COE SSA for their mission applications must
coordinate with DISA to ensure that there are no conflicts between their mission-application segments and
COE-component segments. If the DII COE SSA is not used, it is the program manager’s responsibility to
ensure that there are no conflicts with mission applications from other program managers. Since DISA
uses a centralized SSA for all DISA JIEO systems, the DII COE SSA manages conflicts between
programs (e.g., ECPN, GCSS, GCCS).

Process Flowchart

3-10 July 1997 DII COE I&RTS: Rev 3.0

· releasability restrictions (especially export restrictions)
· platform availability (PC only, Solaris only, etc.)
· short paragraph describing the segment features
· unclassified picture of the segment’s user interface (GIF, JPEG, or X11 Bitmap

format).
· authorization keys (assigned by DISA)
· list of related segments
· list of keywords for use in catalog searches
· program management point of contact
· technical point of contact
· process point of contact

The segment name can be any character string that is unique among all segments. Segment
names for COTS products should usually not include the vendor’s name since this will
make any segments that depend upon the product vendor-specific. That is, a segment
name such as

Company A DCE

is inappropriate because segments that are dependent upon DCE will have to have their
dependencies changed if a different vendor is chosen to supply DCE. Refer to Chapter 5
for specific rules regarding selection of a segment name.

Each segment is assigned an identifier called a segment prefix. The segment prefix is a 1-6
alphanumeric character string that is used to prevent naming conflicts between segments.
Use of the segment prefix is required in any situation where there is the possibility that
two different segment developers might choose the same name for a public symbol such as
an environment variable, executable, API, or library. Two segments may in fact have the
same segment prefix as long as there is no possibility that public symbols will conflict.
This is realistic only if one developer creates both segments.

Segment directory names are often the same as the segment prefix, but they do not have to
be. Segment directory names can be any name that conforms to rules imposed by the
target operating system, provided they consist only of printable4 characters, begin with an
alphanumeric character, does not end in a blank, and are not already in use by another
segment. It is recommended that directory names be limited to 14 characters to avoid
porting problems. Refer to Chapter 5 for a specific discussion of how segment name,
segment prefix, and segment directory name are used to uniquely identify a segment.

Note: The COE stipulates the same requirements for choosing directory
names and filenames as are stipulated for segment directories,
except that uniqueness is required only of the segment directory
name.

4 Some operating systems allow “.” to separate file extensions from filename. Some allow hyphens and
underscores. Thus, the COE requires only that the filename be printable, and not begin or end with a
blank character.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 3-11

At segment registration time, system resources must be identified. These include estimates
of memory and disk requirements. System resources that must be shared and coordinated
among other segments must also be identified. These include shared memory estimates,
port assignments (e.g., /etc/services entries, reserved UIDs), and any other
resources that might cause conflicts between segments.

Some segments need access to certain restricted privileges provided by the COE. For
example, some segments need to have root privileges to be properly installed. Also,
authorization must be granted by DISA before a COE-component segment can be created.
When such specialized requests are received and authorization is given by DISA, the DII
COE SSA will give the requesting segment developer one or more authorization keys.
Unless these keys are provided with the segment, the COE tools will refuse to honor
requests for restricted services.

Not all information provided at segment registration time is made available to the
community at large. The technical point of contact is available only to the DISA
Engineering Office in the event that technical questions or issues arise during segment
integration. The process point of contact is the individual authorized by the segment
program manager to actually submit the segment or to receive status information and
notifications. The program management point of contact is the only individual authorized
to commit schedule or resources and is the only individual authorized to release
information about the segment to the community at large. The three points of contact are
selected by the service/agency responsible for the segment. Services may elect to designate
a single individual for all three points of contact, and may include an alternate point of
contact for each category.

Referring to Figure 3-1, two steps constitute the Segment Registration phase:

1. Register the segment. The segment registration form can be submitted in written form,
through email, or in HTML format. Appendix E contains more information on how to
do this. Once the developer submits the registration form, the information is entered
into the online repository and confirmation is sent to the process point of contact.
Segment information is entered into the segment catalog with a tentative release date
for the segment. The segment prefix and directory requested will be granted unless
they have already been assigned to another developer’s segment.

2. Download segments required for development. When notification is received that

segment registration was successful, developers may download COE-component
segments, developer toolkits, object code libraries, and other segments required for
software development. Appendix D provides more information on how to download
segments, tools, libraries, etc. It also provides information on how to access and
search the online segment catalog.

Process Flowchart

3-12 July 1997 DII COE I&RTS: Rev 3.0

3.2.1.2 Segment Development

The COE approach is designed to be non-intrusive; it places minimal constraints on how
developers build, test, and manage software development. Developers are free to establish
a software development environment that is best suited for their project. The COE
specifies no particular programming language because it is only concerned with handling
the resulting executable, not the process or language used to create it. The COE requires
only that deliveries be packaged as segments, that segments be validated before
submission, and that segments be tested in the COE prior to submission. Figure 3-1
assumes this degree of freedom and omits steps such as design reviews and code walk-
throughs that are an expected part of any development effort.

1. Load and configure the COE. Most developers will find that the COE will meet their
needs as is. However, for some developers the COE kernel may need to be extended
to increase shared memory size, message queue sizes, add sockets, etc. Any changes
to the downloaded COE must be carefully recorded as environment extensions. It is
the responsibility of the segment to request that the COE installation tools make these
extensions as the segment is installed. Doing such extensions other than by using the
installation tools is a violation of the COE.

2. Verify that the COE is valid. The tool VerifyCOE checks the integrity of the COE

and should be run any time a modification is made to the COE kernel to ensure that
the resulting environment is still COE-compatible. It also checks security-relevant
features to be sure they have not been adversely modified.

3. Write and unit-test code. Develop and test a baseline version of the new software

segment as independently of COE software as is possible, but within an environment
as nearly identical to the actual runtime environment as is possible. The purpose of this
step is to resolve problems within the segment and identify potential interface
problems between the segment and the COE, especially the runtime environment. The
simplest approach is to launch the segment executables from a command-line prompt
within an xterm window (or equivalent) and look for software bugs or conflicts with
the COE. The focus of this step is to verify that the segment is correct internally.

4. Create segment structures. The focus of this step is to verify that the segment can

interface externally with the COE. Chapter 5 identifies information required to
describe a segment through use of segment descriptors. Decisions should be made at
this point whether to package data and software together or as separate segments,
how best to include any required environment extensions, how to handle segment
installation and removal, which features should be icons versus menu entries, etc.

5. Validate the segment. The tool VerifySeg must be run against all segments to

confirm Runtime Environment (Category 1) DII compliance. VerifySeg must be
rerun when any file within the segment that will be present at runtime is modified. This
includes segment descriptor files, datafiles, and executables. A segment cannot
proceed any further in the process until VerifySeg confirms its validity. COE tools
used later in the process will reject a segment that has not passed VerifySeg.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 3-13

6. Install and test the segment. The tool TestInstall allows a segment that is

already present on the disk to be installed exactly as if it had been loaded from
distribution media at an operational site. When installed successfully, it should be
accessible from any operator login that has a profile that has been set up to include the
segment. At this stage, it should not be necessary to launch executables from a
command line or by any other interim technique. If the installation and test are not
successful, the tool TestRemove will undo the side effects of installing the segment,
but will not delete the segment from disk.

7. Evaluate the segment’s DII compliance level. As part of the segment test, the

developer must evaluate the segment’s compliance5 using the I&RTS and User
Interface Specification checklists. The checklists are to be submitted with the segment
as part of the segment delivery.

8. Create an installation tape. The tool MakeInstall creates an installation tape than

can then be loaded through tools in the System Administration application just as a site
operator will do. Developers must include this test and load the segment on a pristine
system to be sure that all development environment dependencies have been removed.
Failure to correctly perform this step increases the probability that problems will be
found when this step is attempted at the SSA.

9. Perform a system test. Whether the segment has been installed from tape, created by

MakeInstall, or created through the TestInstall tool, a system-level test
should be performed to identify any problems with the COE or other segments for
which the developer is responsible.

10. Test segment APIs. This step applies only to those segments, typically COE-

component segments, which contain APIs that other segments will use. A test suite is
required for all segments that submit APIs.

3.2.1.3 Segment Submission

Segment submission to the SSA can be accomplished in two ways. MakeInstall can be run
to create a tape that is sent by mail or courier to the SSA. Multiple segments may be
submitted on the same tape. This approach is required for classified segments, and for
segments that are “very large” and so would require a lengthy transmission time if
submitted electronically.

An alternative approach, implicit in Figure 3-1, is to submit the segment electronically.
Electronic submission of a segment is an automated process of compressing and
encrypting the segment, then using Web technology to transmit it to the SSA. The

5 The segment developer does not assign a compliance level to the segment. The SSA assigns a
compliance level, but the developer is required to do a self-evaluation and provide the results to the SSA.
This approach allows the developer to have a good idea of what the compliance level will be before the
segment is submitted, and it assists the SSA in assigning the compliance level. In effect, the SSA validates
the compliance tests performed by the developer.

Process Flowchart

3-14 July 1997 DII COE I&RTS: Rev 3.0

segment must be in the “pre-MakeInstall” format meaning that alterations made during the
installation process have not been performed. These alterations are usually done by a
PostInstall script (see Chapter 5) which may create data files, perform operations
based on hardware type, etc.

1. Compress and encrypt the segment. The tool mkSubmitTar performs this task on a
“pre-MakeInstall” format segment. The directory Integ, described in Chapter 5,
must contain an annotated description of output from VerifySeg. If a segment
includes any public APIs, a test suite must be included to test each of them. The test
must include an adequate range of test cases and the results expected for each test.
Details must be sufficient for use by competent testers who do not necessarily already
understand either the application or its individual APIs.

2. Submit the segment. The tool submit does this electronically across the Internet.

Multiple segments can be submitted at the same time.

3.2.1.4 Segment Integration

Segments received, whether by tape or electronically, are placed into the software
repository, tested in isolation, and then tested as part of the deliverable system. Validation
is performed at each step using exactly the same tool set that the developer used during
the development phase. This approach allows many integration responsibilities to be
performed by the developer with only a need to validate that they were performed
correctly when a segment reaches the traditional system integration phase.

The process steps performed from this point on in Figure 3-1 are the responsibility of the
SSA, not the developer.6 They are described here because developers are still an active
part of the process in isolating and correcting problems.

1. Receive segments. Segments received electronically are placed in an isolated and safe
disk directory. Segments received via tape are placed there manually by a member of
the SSA configuration management team. The process point of contact is notified that
the segment has been received and is in process.

2. Validate the segment. VerifySeg is run against the segment submitted and the

results are analyzed. Discrepancies between the output of VerifySeg produced by
the developer and that produced by the integrator can occur for a number of harmless
reasons. These are reconciled against the annotated results provided by the developer
when the segment was submitted. Segments that fail to pass VerifySeg or the
reconciliation process are rejected and the process point of contact is notified.

3. Submit segment to the online repository. Segments that have been validated by

VerifySeg are compressed, encrypted, and placed in the software repository.

6 The DISA SSA performs these steps for COE-component segments and mission-application segments
within DISA COE-based systems. The SSA identified by the cognizant program manager performs them
for other mission-application segments.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 3-15

Notification that the segment is now in the repository is sent to the process point of
contact.

4. Test segment in isolation. The segment is loaded on a test system with the minimal

segments required for the operational system. If the test fails, the process point of
contact is notified with a detailed description of the problem. The segment remains in
the repository but it is not available to anyone except the developer.

5. Assign segment DII compliance level. Testing performed by the SSA includes a

compliance check using the I&RTS and User Interface Specification checklists. The
checklists produced by the SSA are compared against the checklists submitted by the
developer (as described in subsection 3.2.1.2). Discrepancies are evaluated to
determine the reason, and the appropriate process point of contact is notified of the
compliance level assigned to the segment.

6. Advance segment to test level. Segments that work correctly in isolation are advanced

to the next testing level and are so noted in the repository. The process point of
contact is notified and developers needing the new segment are notified that a beta
version is available.

7. Create Configuration Definitions. Most segments will not be loaded on every

platform. One or more configuration definitions that include the segment are
established.

8. Perform system test. Configuration definitions including the segment are loaded onto

platforms for system testing. Those that fail are retained in the repository and a list of
problems is sent to the process point of contact. Depending upon the severity of the
problems, the segment may be rejected, provisionally made available for other
developers to continue working, or accepted with known problems.

9. Accept segment. Segments that are deemed to be sufficiently stable are advanced in the

test process and declared to be ready for delivery to operational sites. This is so noted
in the repository and notification of acceptance is sent to the process point of contact.
The segment catalog is updated to reflect that the segment is now available and
interested parties (operational sites, program managers, developers) are notified of the
new capability.

3.2.1.5 Segment Installation

Segments can be distributed to sites either electronically or by other distribution media as
appropriate. The MakeInstall tool is used to extract segments from the repository and
write them to tapes or other media. The media is then manually delivered to the site. Once
received at a site, the site administrator can use the installation tools in the System
Administration application to load segments directly onto individual platforms. The
installation tools also allow the site administrator to designate one or more platforms as
segment servers, load segments from electronic media onto the segment server disk(s),
and then load platforms across the site LAN from the segment servers. This greatly

Process Flowchart

3-16 July 1997 DII COE I&RTS: Rev 3.0

reduces installation time because multiple platforms can be loaded simultaneously from
disk rather than serially from much slower storage media.

Installation can also be performed electronically through the RemoteInstall tool. The
RemoteInstall tool operates in either a “push” or a “pull” mode. In a push mode, the
appropriate SSA initiates electronic transfer of segments from the repository to
operational sites. Segments can be installed in a push mode to either a segment server or
to an individual platform. In a pull mode, the remote site initiates the segment transfer.
This is done by selecting the RemoteInstall tool from the System Administrator
application. Operating in this mode, the RemoteInstall tool establishes a connection
to the repository, provides the operator with a list of segments that can be downloaded,
and provides the operator with the option of loading segments onto a segment server or
installing them directly onto a platform.

The discussion of installation given here is necessarily abbreviated. The capabilities
provided by the COE are much more powerful. Refer to the appropriate SDMS (Software
Distribution Management System) documentation for more information.

3.2.2 Processes Specific to Database Segments

When developing a database segment, the following additional issues pertaining to its
database must also be addressed. The discussion that follows specifies requirements of all
COE-based database segments. The DII COE SSA will ensure compliance for all database
segments for which DISA is responsible. For all other database segments, compliance
assurance is the responsibility of the cognizant DOD SSA.

3.2.2.1 Segment Registration

Both the use and the source of data will be identified as part of the Segment Registration
for any database segment. The Segment Registration document will also include space
requirements for the database within the DBMS (including index space), database
scalability (including rate of growth, if any), and application usage. The application usage
section must define access for each individual application at the data object level in terms
of objects accessed and the mode (read or read/write) of that access. Developers must
identify any COTS tools they are using if those tools will require runtime components to
be installed outside the segment.

Where application segments that use databases are being developed separately from the
database segment(s) they access, the developers must define the application’s required
access to database objects. The database segment owner (development sponsor or DISA)
controls an application’s access to database objects and must approve or reject a
segment’s proposed read/write access to the database. Database segment owners are
responsible for defining generic read access permissions for their databases. In either case
an application’s access requirements are the basis for defining its corresponding database
roles.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 3-17

DISA will review database segments’ contents for duplication of data objects and sources
that already exist in common databases or in other database segments. The space or
storage requirements of the segment will also be reviewed in the context of storage
availability on DII Database Servers. DISA (or the cognizant DOD program manager)
may direct developers to use common or external data objects.

Registration of database segments requires additional information to that given in
subsection 3.2.1.1:

Functional Area DOD functional area as defined in DODD 8320.1.
DBMS The DBMS that is used to manage the segment(s)

being registered.
Database/Data Store Name The identifying database name(s) and/or file name(s)

for the segment(s) being submitted, with version
numbers assigned in the field.

Using Applications/Systems The name and brief description of applications or
systems known to use the data segment(s) being
registered.

Domain Description A brief description of the information domain of the
segment(s) being registered.

Fielded Sites A general description of the DOD locations where
the data segment(s) will be used.

The additional information listed here must be updated when the database segment is
actually submitted. It is captured and made available to authorized users for purposes of
potential reuse of the data assets provided in the segment.

3.2.2.2 Segment Development

The segmentation process for database segments begins with identifying the database
segments that will be established to create the database. It is possible that the database can
be implemented as a single segment or multiple segments.

A database segment is the building block that provides specific data services for one or
more DII COE applications. If a database is only supporting one application and has no
domain tables (e.g. Country Codes), then it may make sense to implement a single
application-unique database segment. However, if the database supports more than one
application, then the developer should determine whether the database should be
implemented with one or more shared database segments. The advantage of multiple
shared database segments is that the segments are more granular and a shared data server
can be configured to support the data requirements of mission applications without having
to carry superfluous data services. A disadvantage of multiple shared database segments is
the management of database object dependencies that can be created by such things as
foreign key constraints. These inter-segment dependencies complicate the management of
segment installation and, moreover, the removal of segments.

Process Flowchart

3-18 July 1997 DII COE I&RTS: Rev 3.0

Another consideration for developers is to determine which parts of a database are shared
between applications and which parts are unique to a given application. From a
configuration management point of view, one segmentation strategy would be to place the
application-unique database components into a separate segment.

Additionally, determining the contents of a database segment requires several factors to be
considered:

· Which tables can be conveniently managed as a unit,
· Which tables are defined to support a functional area,
· What are the sources of data, and
· What are the database object dependencies.

The structure of the database or databases in the segment must be fully described during
this phase. This descriptive information includes tables, elements, indexes, privileges,
triggers, etc. The database description will be maintained in the ReleaseNotes for the
database segment. The storage structure of the segment must also be defined.

Developers should examine the SHADE repository of universal and shared database
segments for potential reuse. For example, if the SHADE repository contains a universal
database segment for country codes, then it may be possible to remove the country-code
table from the proposed segment. It is more than likely that the physical schemas will not
match but it is possible that the proposed segment could implement a database view to the
country-code table in the universal segment.

Any changes to the DISA-defined configuration of the COTS DBMS must be requested
from DISA as COE environment extensions. The DISA DII COE Chief Engineer will
review such requests to ensure they do not conflict with the needs of other segments, and
will be responsible for changing the COTS segments. DISA’s defined DBMS
configurations are available from the COE Online Services.

A test database is required for all database segments. The purpose of the test database is
to allow the SSA to test the segment’s operations and to test the applications that access
the segment’s data. The test database must be unclassified. If the segment’s data fill is
classified, but the schema is not, a separate data segment must be provided for the
classified fill.

3.2.2.3 Segment Submission

Developers must remove all data files from the DBS_files directory before submitting
the database segment. The files in this subdirectory are the ones owned by the DBMS and
used to hold the online database. They are created on a database server during
PostInstall, and should not be included with the segment. See Chapter 5 for an
explanation of the DBS_files directory and for more information on the database
segment’s structure.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 3-19

Database segments submitted to the DII COE SSA will be included in the SHADE
repository.

3.2.2.4 Segment Integration

Developer testing of all applications that access a Database Segment’s data structures is
performed during this phase to ensure proper functioning and performance of new and
existing applications. Following this, a segment installation test will be conducted.

Testing a database segment must include tests of all applications that access the objects in
that segment, whether or not they were provided by the database segment’s developers.
The purpose of this testing is to identify application problems so their respective
developers can initiate corrective action.

3.2.2.5 Segment Installation

Database segments are installed only on a database server. Where data fill is a part of a
database segment, its installation via RemoteInstall may not be supported because of
the potential need to transmit a large quantity of data electronically. Network transfer of
large data sets can take a long time. Since the DBMS must be operating in its maintenance
mode during a database segment install, users could be denied database services for a
significant, possibly intolerable, period of time.

Migration Considerations

3-20 July 1997 DII COE I&RTS: Rev 3.0

3.3 Migration Considerations

The preceding section dealt with the development process as if it represents new
development. However, much of the present and planned functionality is derived from
existing legacy systems, not new development, and it simply is not feasible in many cases
to totally abandon a system and start over. A migration strategy must be implemented
which allows legacy systems to take advantage of COE benefits. The strategy must
simultaneously balance full DII compliance versus implementation cost, rapid system
deployment versus risk to system stability, porting functionality versus new development,
and preservation of capabilities users already have versus duplication.

With the exception of subsection 3.2.1.2, the process outlined in the preceding section
applies directly to both new development and migration strategies, or requires minimal
customization. However, subsection 3.2.1.2, which describes the segment development
phase, requires a few additional special considerations.

It is helpful to remember that the overarching approach is to build on top of the DII COE,
not to decompose the COE into constituent parts to build on top of some other
architecture or body of software. In other words, the approach is to integrate components
from legacy systems into the COE, not to integrate the COE into an existing legacy
system. This perspective is fundamental to successful integration.

The key to reusing the COE and to achieving DII compliance is the concept of the public
API. APIs represent the gateway through which segments may gain access to COE
services, including the kernel. Software developers and integrators must use public APIs
and avoid dependence on a particular version of the COE since the public APIs will be
preserved as the COE evolves. Applications must migrate away from private or legacy
APIs since they will not necessarily be supported in subsequent COE releases.

Given this perspective of integrating components from a legacy system into the COE, the
following considerations will lead to a successful migration strategy. The
recommendations are not listed in any particular order or priority because what will be an
effective sequence will vary from one legacy system to another.

· Create a requirements matrix. The matrix should identify requirements already met by
the COE, requirements that the COE meets but which require modification, and
unique requirements. This matrix represents the development work that must be
performed. Modifying COE functionality requires negotiation with the DISA DII COE
Chief Engineer and approval by the DISA COE CCB. Mission-unique requirements
may be met by porting legacy components, by other mission segments external to the
COE, or by COTS products.

· Identify anticipated source code changes. Most segments should be able to achieve

Level 5 compliance without any source code changes. This is because most of the
Level 5 requirements are simply good, standard programming practices (e.g., not
hardcoding absolute pathnames in the application). However, above Level 5, source
code changes are likely to be required to migrate the legacy system to use COE

Migration Considerations

DII COE I&RTS: Rev 3.0 July 1997 3-21

services. Commercial products are available which will analyze source code and
identify API usage and hence help pinpoint areas where changes may be required.

· Identify public COE APIs to be used. The API analysis from the preceding

recommendation can be useful in determining what APIs from the COE are going to
be needed. An initial step in migrating to use COE services might be to create an
interim layer that maps legacy APIs to their corresponding COE APIs. This will often
help in rapidly achieving Level 6 (Intermediate DII Compliance) from Level 5
(Minimal DII Compliance).

· Identify areas where the proposed application overlaps the COE. Runtime compliance

at or above Level 6 is largely a process of removing duplication.

· Identify support services within the legacy system. These support services are

candidates for replacement by COE services and should be partitioned away from the
mission application through modularization of the code.

· Develop a schedule and strategy for achieving Level 8 compliance (Full DII

Compliance Level). Intermediate steps to achieve a lower level of compliance are very
useful as progress milestones in the migration strategy. Segments must demonstrate
Level 7 compliance (Interoperable Compliance) prior to acceptance as an official
DISA fieldable product and must show migration to Full DII Compliance unless the
segment will be phased out.

· Determine how the segment will be integrated with the Executive Manager. The COE
installation tools provide “hooks” to allow segment functions to be accessed from
either an application icon available from the desktop or as options in a pull-down menu
within an application. The User Interface Specification contains guidelines for which
approach is most appropriate for segment features. The Executive Manager uses a
commercial CDE product, so consulting CDE documentation will be very useful.

· Determine which account group(s) the segment will belong to. Chapter 2 explains that

account groups permit dividing users into groups based on how they will use the
system (system administration, database administration, etc.). This is important
because it is the account group that determines the runtime environment for a
segment. The COE allows a segment to belong to multiple account groups because
some segments, such as a Printer segment, are of general utility while others, such as a
propagation-loss tactical decision aid, are much more specific to a mission-application
domain.

· Determine the required runtime environment extensions. The COE enforces the

principle that segments may extend a base environment according to a set of well-
defined rules, but may not alter the environment in a way that adversely impacts other
segments. Chapter 5 elaborates on the rules for how segments may extend the
environment. The important points here are that segments must separate the runtime
environment from software development preferences, and identifying changes required

Migration Considerations

3-22 July 1997 DII COE I&RTS: Rev 3.0

in the runtime environment is the key to achieving Level 3 (Platform Compliance)
compliance.

· Negotiate new APIs or modifications with the DISA Engineering Office. Identifying

functionality missing from the COE or required modifications can often serve to drive
COE development. Modification of APIs and the introduction of new APIs requires
approval by the DISA DII COE Chief Engineer and by the DISA COE CCB.

· Use only public APIs. Use of private APIs or APIs from a legacy system may be

expedient for an interim period. However, use of such APIs will limit compliance to
Level 6 or 7, or lower, and the risks associated with the fact that such APIs are not
supported and may vanish in subsequent releases of the COE are the responsibility of
sponsors of such a legacy system.

DII COE/SHADE Database Concepts

DII COE I&RTS: Rev 3.0 July 1997 4-1

4. DII COE/SHADE Database Concepts

SHADE uses database segmentation and Shared Data Servers (SDS) as the primary underlying
mechanisms to enable data sharing. Packaging data into database segments and installing them on
an SDS allows multiple organizations and functions to share single copies of a DBMS (i.e., one
per physical data server) in the same way that packaging applications into segments allows
software systems for multiple functions to coexist on the same platform. At the same time,
identifying database segments as Shared or Universal allows explicit sharing of data among
software systems, applications, and their user communities. Database segments provide a
convenient way for organizations to load SDSs with the data structures and values that users
require. This packaging technique will also make it easier for data administrators to collect
required metadata on implemented structures and to physically reorganize (multi-segment)
databases in ways conducive to distribution and replication.

The function of a COE SHADE SDS together with the databases it manages is to provide
information to users through applications that access the databases, and to support system and
database administrators’ maintenance functions. The operations of an SDS involve the database
server, the databases/database segments managed by it, and the applications that access one or
more databases. The discussion that follows addresses the operational roles of each.

An SDS provides data management services to its client applications. In order to be useable, it
must constitute a stable, reliable operating environment that developers can design for. Database
services include tools to support the management, by a site administrator, of users’ discretionary
access to databases based on the applications they are permitted to use. This is governed by the
following principles.

· Users will not need access to all applications.
· Applications will have multiple levels of database access that can be granted to users.
· When access to an application is granted to or revoked from a user, the corresponding

database permissions are also granted or revoked.

SHADE database services within the COE are implemented as a federation of application-owned
(Unique) and common (Shared and Universal) database segments. Application segment
developers control the data and structures that are specific to their Unique segments and can
change the data or their structure when necessary. The configuration of Shared and Universal
database segments is controlled by the appropriate joint configuration management authority. All
these databases reside on the SDS that provides services to the applications, acting as database
clients, within the network. The databases within a particular SDS are isolated from each other,
physically and logically, by being placed in separate storage areas and by being owned by different
DBMS accounts. Database developers sustain this isolation by defining one or more database
accounts to own their data objects and by allocating those objects to the owner accounts they
have created.

This configuration, using a disk controller and drive analogy, is shown in Figure 4-1. The core
database configuration, containing the DBMS Data Dictionary and associated system information,

DII COE/SHADE Database Concepts

July 1997 DII COE I&RTS: Rev 3.04-2

is part of the COE and is represented by the System Database. All other databases, whether
provided by DISA, a developer, or some other agency, are included as ‘component’ databases
under the management of the SDS. The set of component databases available from a particular
SDS is determined by the set of applications that server’s database is expected to support.

From the DBMS perspective, all databases are shared assets, whether they are common or not,
because they are accessed by multiple concurrent users. They are also dynamic because their data
changes even if their structure remains static. Databases may be interdependent. Databases
depend on the COTS DBMS service and are built within its constraints. Databases can be
accessed by applications other than those written by the database developer. While database
applications today are usually written by the database’s developers, this will be less true in the
future as SHADE data object reuse increases.

Shared Data Server (SDS)

System
Database

F
A
P
E
S

G
S
O
R
T
S

S
&
M

M
E
P
E
S

Component
Databases

Figure 4-1: Shared Data Server Architecture

Applications that use databases to manage their information are the interface between users and
the data. Some applications use their databases interactively, in a transaction-processing mode, to
perform the work for which they have been designed. Others have a single process that writes
data for many readers. Some pull data from remote sources directly to replace existing data. They
then allow read-only access to that remotely provided information.

Users connect to the SDS through the client applications, possibly in multiple sessions. Each
session must behave as if it is isolated from the rest of the system and knows of no data other than
that belonging to the application it is executing.

Note: The DII COE requires that database transactions implement strict two-
phase locking. Two-phase locking and two-phase commit are not
synonymous. Two-phase locking is implemented by the DBMS to sustain

DII COE/SHADE Database Concepts

DII COE I&RTS: Rev 3.0 July 1997 4-3

the atomic properties of transactions. Two-phase commit is implemented
in a distributed DBMS to ensure consistent updates of replicated data
records. It is used when a distributed database requires synchronous
updates. For example, GCCS uses an asynchronous distributed
transaction model and therefore cannot use two-phase commit.

Constraints on Database Developers

July 1997 DII COE I&RTS: Rev 3.04-4

4.1 Constraints on Database Developers

The developers of databases and applications accessing databases must conform to the COE
database server environment so they do not bypass its features. Conformance also limits the
likelihood of data corruption. The combination of the SDS configuration and the developers’
implementations must ensure two things. First, each connection of a user to a database through an
application must function in the proper context for that application and database. Second, each
user’s connection to a database must not interfere with any other user’s connection to the same or
any other database.

The development and integration standards for COE databases support an evolving configuration
of database services. Using GCCS as an example, in version 0 each GCCS application had its own
database and database management system. Commencing with GCCS 1.1, the separate database
servers were replaced by a single-server running a single-instance of the database management
system. Each application retained ownership of its database within that instance, but shared the
DBMS service with the other applications’ databases. The next step was to have a database
segment on the server that is accessible from multiple application databases. For example,
suppose two application databases need a country-code table. In the prior step, each database
would have its own version of the country-code table, which might be identical. In this step, a
single copy of the country-code database segment would be on the SDS and accessed by both
applications. Thus, the SDS provides shared, concurrent access to multiple databases and
database segments with varying degrees of autonomy. COE-based systems are to follow the same
approach as that pioneered by GCCS.

The principal reason for this change in GCCS was to meet DOD’s information availability
requirements. The multiple instance configuration split information among data applications that
were uniquely configured to support the needs of specific mission applications. The single-server,
single-instance data management service provided by GCCS conserves system resources by not
requiring multiple copies of the DBMS to be executing and eases system management by
providing a single point-of-entry for database management services. That single point of entry
also simplifies application development. However, that is not the only method for implementing
SHADE data services. COE systems may implement a configuration that distributes the database
over a LAN/WAN for survivability or to distribute the processing load. Multiple DBMS instances
may be used for data isolation or to separate different user communities on the same server.
Regardless of the specific database server configuration, SHADE requires that information be
treated as a DOD corporate resource, not something owned by applications. The benefits that
come with the central service does limit the freedom of developers by requiring that they
implement databases compatible with the larger multi-database environment. In addition, the
increased complexity of a multi-database system could overburden the operational sites’ system
and database administrators unless it is implemented consistently. This again limits developers by
constraining their databases to function within a consistent administrative framework.

The principal consideration for developers is that their applications and databases no longer have
exclusive use of the database management system. Instead of being an application-specific data
management tool, the DBMS is a central service that supports all applications’ databases. As a

Constraints on Database Developers

DII COE I&RTS: Rev 3.0 July 1997 4-5

result, developers cannot customize or tune the DBMS to the particular behavior of any single
application. Any such modifications to the DBMS will inevitably affect other applications and
databases. Similarly, the individual component databases are no longer the sole occupants of the
DBMS. Developers must implement their applications, constraints, and component databases so
that they do not interfere with others sharing the same DBMS. Further, because there are multiple
databases in the DBMS, applications can connect improperly to other databases. Developers must
ensure that their applications connect only to the database they intended to use. They must also
design their databases to maintain their own integrity without reference to external applications.

In order for component databases to plug into and play properly on an SDS, they must conform
to the standards defined herein. The objective is to support the independent development of
maintainable databases that will function reliably within the larger multi-database system. This
release of the I&RTS has extended the COE tool set to include tools that deal specifically with
integration problems related to multi-database environments.

Developers must implement their databases such that the operational sites’ administrators can
manage the collection of databases. If system and database administrators are required to manage
multiple databases, each with its own integrity rules and access methods, their jobs quickly
become impossible.

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-6

4.2 Database Integration Requirements

The SHADE Database Server is the COE component that provides shared data management
within COE-based systems. Regardless of the COTS DBMS used to provide database services, its
functions within the system remain the same:

· Support independent, evolutionary implementation of databases and applications accessing
databases

· Manage concurrent access to multiple, independent, and autonomous databases

· Maintain integrity of data stored in the DBMS Server

· Provide discretionary access to multiple databases

· Sustain client/server connections independent of the client application’s and database server’s

hosts

· Support distribution of databases across multiple hosts with replicated data and with

distributed updates

· Provide maintainability of users’ access rights and permissions

· Support backup and recovery of data in the databases.

In addition, database services within the COE are not restricted to a single vendor’s DBMS. As a
result, developers must implement their databases such that dependence on any particular DBMS
vendor’s product is limited. The discussion that follows provides more detail on each of these
general requirements.

4.2.1 Evolutionary Implementation

The goal of evolutionary implementation is to be able to incrementally develop, field, and improve
software and information services. This “build a little, test a little” philosophy applies to databases
as well as applications. In the database context, the objective is to field the latest and best
information structures and contents, and to progressively reduce the number of structural variants
representing the same entities and relationships. Databases and applications should be able to
evolve independently in principle, but in practice this is tempered by the dependence of
applications on the database’s structure. In addition, component databases are dependent on some
unique DBMS features for their implementation.

Database developers can still support evolutionary implementation by maintaining the modularity
of their component databases. To achieve this goal, component databases must first coexist within
the server without corrupting each other’s data. This does not simply require isolating databases
from each other; it requires that all actions across database boundaries be intentional and

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 4-7

documented. The COE/SHADE architecture requires that segments not modify other segments.
The same applies to component databases modifying or extending other database segments. When
a database segment does have a dependency on some other component database, that dependency
will be kept in a separate segment.

Component databases are dependent on the DBMS used for the SDS. The specific commands
used for their implementation within the DBMS and the environment it provides are both defined
by the DBMS vendor. Database developers must be careful in their use of vendor-specific features
so they do not create unintended dependencies on specific database management systems or, more
importantly, particular versions of the DBMS, while still taking advantage of the database server’s
capabilities. To accomplish this, developers shall separate DBMS-specific code from that which is
transportable. See Appendix F of this document for information on vendor products. Additional
information and guidance on SHADE-specific issues can be found in the SHADE Architecture
and related documents.

The same constraints on databases also apply to applications accessing those databases.
Application developers must ensure that applications connect through regular, documented APIs
and shall not assume the use of particular DBMS versions. This does not prohibit developers from
designing to the current version of a COE-compliant DBMS, using vendor-supplied tools that are
part of the COE, or from accessing objects in other database segments. It prohibits developers
from embedding DBMS vendor’s runtime libraries or environment variables in the application
segment. For example, developers should not provide their own coraenv script in the
application segment because it creates an implicit version dependency on that version of the
Oracle RDBMS. In addition, this example interferes with the Database Administrator’s (DBA)
management functions.

The key to managing the evolution of component databases and the applications that use them is
documenting their interrelationships. Applications’ dependencies on databases shall be
documented so that database-segment version changes can be tested with the applications. The
component database’s dependency on the DBMS will also be documented for the same reason. If
developers use DBMS vendor-supplied tools to implement applications, the dependency on the
tools will be documented. When applications or component databases access data objects
belonging to other component databases, the dependency among the databases shall be
documented as well. These dependencies are documented under the Database and Requires
descriptors of the segment’s SegInfo file. See Chapter 5 for more information.

When one developer is responsible for both applications and databases, the management of such
interdependencies is simplified. Database segments and associated application segments will
usually be delivered at the same time and installed together. When separate developers are
responsible for databases and applications, however, careful coordination between the two
developers will be required. As the database federation evolves, it is likely that component
database segments will be upgraded before applications that access them. When applications are
affected by component database segment modifications, legacy views may be provided as directed
by the cognizant authority for the segment. Such views will be read-only, but can allow query
tools to continue to function until they are modified to work with the re-engineered database.

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-8

4.2.2 Database Segmentation

Another issue with respect to modularity is that of subdividing a database into coherent segments.
If a database is only supporting one application, then it might make sense to implement a single
Unique database segment. However, if the database supports more than one application then the
developer should determine if the database should be developed with one or more Shared
database segments and Unique segments. The advantage of multiple shared database segments is
that the segments are more granular and an SDS can be configured to support the data
requirements of mission applications without having to carry superfluous data services. A
disadvantage of multiple shared database segments is the management of database object
dependencies such as foreign key constraints. These inter-segment dependencies complicate the
installation and deinstallation of database segments.

 In the course of determining which data objects will be grouped into a database segment,
developers need to consider several factors:

· Data Objects that can be conveniently managed as a unit,
· Data Objects that are needed together to support a functional area,
· Common sources or providers of data,
· Data object interdependencies, and
· Frequency of update.

Modularity can be enhanced by allocating data objects among Shared and Unique database
segments. A Shared database segment contains data objects that are intended for use by multiple
applications or other data stores. A Unique segment’s objects are specific to the applications
contained in a specific software segment. Additionally, the developer should investigate the
SHADE repository for existing Universal and Shared database segments for potential reuse. For
example, if the SHADE repository contains a Universal database segment for country codes, then
it may be possible to remove the table(s) defining country codes from the proposed segment and
use the existing country code database segment. In the case of a legacy system, a view may need
to be created to the Shared or Universal database segment until the application can be modified.
Divide the remaining tables in the database along functional boundaries to form segment
groupings (i.e., neither unique nor replaceable by an existing database segment). Potentially
Shared database segments should be registered in the SHADE repository. The outcome of this
process should be a set of one or more database segments with their corresponding groups of
identified database objects. Specific guidelines for creating database objects are found in
subsection 4.3.

The database objects in a Shared database segment are common to many applications residing in
different segments. Shared database segments prevent duplication of widely used or required
database objects, such as reference tables, and procedures, such as validation or conversion
routines. They also support interoperability at the data level by standardizing key cross-reference
fields. The objects in a Shared database segment must be accessible to many applications,
regardless of which database they reside in, and may support other database segments that are
then dependent on that Shared database segment. Such segments will often provide generic read-

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 4-9

only or read/write database roles (see subsection 4.3.5) to support their use by other segments. In
this context, the only distinction between a Shared and a Universal segment is the organizational
level at which their contents are managed.

The database objects in a Unique database segment are not open to, nor intended to support,
multiple software or data store segments, but are used only by a particular software segment. This
software segment owns, controls, and depends on its own database segment, and no other
software segment does. Thus, a Unique database segment usually contains the database tables,
triggers, and procedures that support specific, intrinsic functions of a software segment; it has no
data of value to any other segments.

Dividing data in this manner simplifies the system integration effort. When a change is made to a
Shared database segment, all developers of applications that access that segment must be notified
and must be given time to adjust their application segments. Otherwise the Shared database
segment must incorporate legacy views to support the applications until they can be modified.
Changes to Unique database segments, however, require no coordination as only the applications
in the dependent segment are affected. In addition, legacy views are seldom required as the
applications and their database segment, both usually maintained by the same developer, will be
modified at the same time.

Developers should also consider the frequency of updates against data tables when defining their
database segments. Separating static reference tables from those that are dynamic allows more
flexible system and database administration. The separation may be accomplished by placing the
static objects in their own database segment, or by creating static objects in a separate storage
area (e.g. an Oracle tablespace for read-only tables) within the segment. The appropriate method
will depend on the target DBMS. See subsection 4.3.2 for storage allocation methods and
Appendix F for implementation information specific to each vendor’s product.

4.2.3 Managing Multiple Databases

The COE database architecture is a federation of databases with varying degrees of autonomy.
Federated means that the component databases share DBMS resources. They process data
cooperatively but are not part of an overall schema. They may use Shared and Universal database
segments. In some cases they may also share or exchange data. Autonomous means that each
database remains an independent entity. Individual databases may be modified or upgraded
without reference to others (e.g., segments may be added or deleted to support the functionality
of the applications that use the database). Individual database segments within a database may not
be changed without reference to others unless they are unique segments. Developers are also
responsible for maintaining their own data access and update rules.

The federated architecture provides the same modularity within the SDS that mission-application
segmentation does for the user interface. The set of databases available from any particular SDS is
tailored to the information needs of the individuals using that server. Database segments that are
not needed can be omitted. This may appear to conflict with SHADE’s stated goals of improving
interoperability through data standardization. In fact, it supports those goals by separating the

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-10

data that can be shared from those that should not be. As a result, developers and data stewards
can concentrate their efforts on standardizing those data where there is the most benefit in terms
of quality and interoperability.

In order for this to work, each component database must be implemented in a self-contained
manner. This is not to say that a database supporting a set of applications should be self-sufficient.
One goal of SHADE’s modular database implementation is to limit the redundancy of information
among component databases. Developers should not incorporate information in component
databases that is already available from other, existing database segments. Instead, being self-
contained means that each component database must contain all information needed to manage its
objects and maintain their integrity. The issues involved in implementing this are discussed in the
next subsection.

4.2.4 Data Integrity

Data integrity addresses the protection of the information stored within a database management
system. There are three general circumstances that must be addressed.

1. The prevention of accidental entry of invalid data.
2. The security of the database from malicious use.
3. The protection of the database from hardware and software failures that may corrupt data.

Implementation of appropriate data integrity measures is the responsibility of the database
developers using the features of the DBMS.

The SDS is responsible for preserving the integrity of each component database and for
preventing connections between an application and data that belong to any other application.
COE-based systems may well be secure systems that contain and process classified data. The
database management component must conform to the security policies and practices of the
overall program. Otherwise, the SDS supports the data access restrictions and integrity
assumptions incorporated in each database.

The SDS provides the basic functionality expected of a DBMS. It ensures the recoverability of
failed transactions or of a crashed system. The atomicity, concurrency, isolation, and durability of
database transactions are the responsibility of the applications accessing the server. However,
supporting these transaction properties is the server’s responsibility. Developers must pay special
attention to transaction isolation because of the multi-database configuration of most COE-based
systems.

Database developers are responsible for defining and implementing the integrity constraints of
their databases. The SDS is responsible for enforcing the developers’ integrity constraints when
they are defined within the database. Application developers must ensure that their applications
connect properly to their databases and do not connect improperly to anyone else’s database
segments. Adoption of these practices protects all applications’ data and allows the SDS to
maintain all databases reliably.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 4-11

Within a component database the implementation of data integrity takes the form of what are
often called constraints and business rules. In the current context, constraints are defined as the
rules within the database that govern what values may exist in an object. Business rules are those
rules within the database that govern how data is updated and what actions are permitted to users.

Until recently, commercial database management systems were limited in their ability to support
the variety of constraints and business rules that may be needed in a database. As a result, most
constraints and business rules of legacy DII databases have been implemented in the applications,
not the database. Because of the federated database architecture and because the applications that
maintain those databases are also developed independently, it is difficult to ensure uniform and
consistent enforcement of those rules and constraints by a DII COE SDS.

To avoid problems with constraint enforcement in the DII environment, developers must place
their business rules and constraints in their databases rather than their applications. This keeps
control of data maintenance access in the hands of the developers where it belongs and ensures
that constraints cannot be bypassed. Developers have the knowledge of their constraints and
business rules; DBAs and users do not.

The reason for placing constraints in the database is shown in Figure 4-2. Application One and its
associated component database were implemented with business rules and constraints in the
application. Application Two placed those constraints in the database. When a third application
(Browser) accesses both databases, it is unaware of Database One’s business rules because they
are inaccessible. If this application, which could be a user-developed query tool, modifies
Database One, it could corrupt the database out of ignorance.

Placing the business rules and constraints in the database promotes client/server independence.
The efficient implementation of constraints and business rules will have to make use of the DBMS
capabilities. If these rules are in the component database, the application is less dependent on the
COTS DBMS product. Also, this approach can reduce network communications loading by
allowing the DBMS, rather than the application, to enforce the rules within the database.
Checking rules within the database avoids passing multiple queries and their results over the
network between the DBMS and the application.

4.2.5 Discretionary Access

Discretionary access addresses the selective connection of users to databases through
applications. Database access is discretionary because not all users have the same permissions to
use applications. The objective is to ensure that users’ database connections operate in the proper
context for the applications. Users must be able to operate several different applications at the
same time. The DBMS server must effect each application’s accesses to different sets of data
objects. This means permission to access to specific tables and the mode (read or write) of that
access. Because several databases exist on the SDS, each application must be written to access
only the database(s) it belongs with; it must be unable to access tables belonging to some other

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-12

application for which it does not have access privileges. Each user-application connection will
have only the permissions needed for that context.

Application 1

Business
Rules Constraints

Application 2 BROWSER

Business
Rules

Data Tables Accessed by Applications

Constraints
Constraints

Constraints

Figure 4-2: Business Rules and Constraints

In this context, DII databases can be broadly characterized as either public or private. A public
database is intended to be generally available and, in most cases, access to it will be given to all
users of a particular system. Public databases are usually read-only. Access to a private database
is discretionary, not general, and is usually restricted to a small group of a system’s users. That
system’s administrators must specifically grant individuals access to a private database. Private
databases often have users with read/write permissions and users with read-only permissions. A
public database will be composed of Shared database segments as defined in subsection 4.2.1 A
private database may also contain Shared database segments, but the data itself needs to be more
closely controlled than the public database. The public/private and Shared/Unique categories
address different issues. The distinction has to do with user access in the former case and with
configuration control in the latter case. A Shared database has many developers writing
applications against it; its schema cannot be easily modified. A public, application-owned database

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 4-13

would have one developer but many users; its schema could be changed without affecting other
developers.

There are three components to the discretionary access issue: Session Management, Discretionary
Access Control, and Access Management. The first refers to the DBMS’ ability to keep different
connections separate. The second addresses the context of an individual connection. The third
deals with the requirements of system and database administrators to manage the accesses that are
provided to users. Without the correct functioning of all three components, data integrity and
consistency can be compromised.

In order for a COE system to be useable, it must provide support to systems administrators as
they manage users’ discretionary access to subsets of applications and databases. This means that
the approach taken in supporting access management must fit with overall system administration
and security policy.

4.2.5.1 Session Management

A database session is an individual connection between an application and the database
management system. It is the means by which the SDS isolates one user’s activities working with
an application from all other users that are connected to the DBMS. In this context autonomous
applications such as message processors are also database users.

The SDS is responsible for session management as shown in Figure 4-3. In this example, two
users are connected to the SDS. The first has two sessions with application A and one with
application B. The second has a session with application B and one with application C. The SDS
maintains five separate sessions. Two sessions are connected to component database A, two to
component database B, and one to component database C; no session is connected to component
database D.

Note that each different execution of an application is considered a separate session and is
functionally isolated from other executions of the same application. Thus, when User 1 starts two
separate instances of application A, the DBMS treats them as different sessions (A1 and A2). This
ensures that changes being made in different sessions propagate correctly and do not corrupt data
accessed by other sessions.

The key points with respect to session management are that the DBMS, in managing connections,
provides sessions to isolate each one from all others. Isolation facilitates transaction management
and system recovery. It also supports the traceability of database transactions to the user and
application.

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-14

A1
B1

A2

B2

C

CB2B1A2A1

A B C D

Listener Processes

Component Databases

DBMS

Database Server
User

Workstations

Figure 4-3: Session Management

4.2.5.2 Discretionary Access Control

Discretionary access control is used to manage users’ permissions to employ applications to
access or modify data managed by the SDS. It has a broader scope than information security.
Security is focused on whether users are permitted to know about and allowed to view certain
information. Discretionary control of access deals not only with users’ permissions to change
information but also the context in which they are permitted to make changes. Users will have
access to multiple databases through many different applications. Their overall database
permissions are the union of the permission sets of the individual applications they have the right
to use. At any point in time only the subset of those permissions relevant to the active session can
be allowed to be active.

Figure 4-4 illustrates the need for discretionary access. A user has three database sessions active,
one with each of three different applications. Each application accesses a different set of objects
within the database. The data objects shown represent all objects that a user has permission to
access and are marked to show which application context is relevant to that access. If all of the
user’s database permissions were active at all times, it would be possible for one or another of the
applications to access and modify data that is not relevant to it. Instead, each application must
only be able to access its corresponding data objects.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 4-15

User Accessible Data Tables

Application 1 Application 3

Application 2

Figure 4-4: Functional Context

It is the responsibility of database and application developers to provide discretionary access
controls. The operational sites’ administrators are responsible for using those controls when
assigning database and application privileges to users. The necessary access controls will be
defined in the database segment design as discussed in subsection 4.2.5. Session management by
the DBMS provides the database and application developer the isolation needed to implement
discretionary access. When designing access controls the following principles apply:

· Users shall have unique accounts within the DBMS. Those accounts shall have only the
database permissions needed for their work

· A user’s database permissions will only be active within the context of the current application

and database session. In other words, when a user starts a database session through some
application, that session will only be able to access the data objects appropriate to the
application and the only active permissions on those objects will be those appropriate to that
application’s use of those objects.

These context-specific controls are necessary because users will have access to multiple
applications and each application has its own set of database permissions. As a user is granted
access to data objects based on the applications needed, the total set of database grants for that

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-16

user expands. The DBMS manages sessions at the user account level, so each user has all granted
permissions on all objects whether they are relevant to the current session or not. If access were
not dependent on context, users could have inappropriate permissions for a particular session. For
example, a user might be able to write to a database segment that is supposed only to be read by
the current application. Such pathological connections to data objects will, almost inevitably, lead
to data corruption.

The context in which an application operates on the database is the application’s “database role.”
A database role is the minimal set of database permissions needed for an application to function
correctly. Since these roles are linked to the application, their definition is the responsibility of the
application developer. However, the roles are implemented within the database so they become
part of the database segment. Role implementation is discussed in subsection 4.3.5.

4.2.5.3 Access Management

Access management addresses the work of system and database administrators giving users the
permissions they need. They must be able to connect users to applications, to databases, and to
database segments. They must also be able to revoke or modify those connections as users
transfer or assume different responsibilities. The large number of applications and databases
available within COE-based systems could make the administrators’ tasks unmanageable if access
management is not supported with the proper tools. This section discusses the developers’
responsibilities for supporting access management.

The act of adding an application to a user’s access list, menu, etc. entails adding associated
database permissions to that user’s DBMS account. Similarly, revoking access to an application
requires that corresponding privileges be revoked within the DBMS. Users must have the proper
permissions on both the application and the database, so the two system activities are
interdependent. Access to applications will often be granted in logical sets or groups of related
applications. As discussed in the previous section, access to databases must be linked to each
individual application or the functional context of the application is lost. One application could
have multiple permission sets if the same executable is used for both read-only and read/write
accesses.

The grant association process is illustrated in Figure 4-5. A user is being given permission to use
three applications. As a part of that process, the user must also be assigned the database roles
associated with those applications. Through the database roles, the user receives the permissions
on the data objects needed to use the applications. If, later, the user no longer needs to use these
applications, the administrators can reverse the process. When the application permission is
revoked, the database roles are withdrawn from the user. The other reason for managing database
roles at the application level can also be seen here. Assume that these applications represent a
group that is accessed together and that have identical database permissions. If the grouping of
applications changes at some point, the collective role might not be valid. In addition, if there is
not a direct one-to-one correspondence between applications and database roles, it becomes
impossible to determine when a database role should be revoked.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 4-17

Application 1

Application 2

Application 3

Application 1

Application 2

Application 3

Role 1

Role 2

Role 3

Role 1

Role 2

Role 3
Associated Roles
and Data Tables

Figure 4-5: Grant Association Process

Database application developers are the only ones with comprehensive knowledge of interactions
with the database. They must define the database roles and provide the scripts or command sets
that create them for inclusion in the database segment. The scripts that grant and revoke database
roles are part of the application segment. This allows them to be executed by the system’s
administrators when they are managing access to the applications.

4.2.6 Supporting Multi-Database Tools

Access to multiple databases is one of the major benefits that the COE brings to its users.
Database browser tools, such as APPLIX, allow users to construct ad hoc queries that span
different subject areas and that are not supported by mission-specific applications. At the same
time, however, such multi-database applications present special problems in the COE context. If
the databases were read-only, browsers would not cause problems. However, many databases are
designed to be maintained interactively using the applications associated with them. This means
that users will have permission to write to databases. Those write permissions are potentially
active when a user is using a database browser that means that the browser tool can also write to
COE/SHADE databases. This is the reason for the database roles discussed above. Since the

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-18

browser is independent of the applications designed for particular databases, it will be unaware of
any constraints or business rules that are in those applications. Thus it could corrupt data due to
its ignorance of the rules.

The key to ensuring database integrity in this case (as in all others) is the enforcement of
constraints and business rules within the database, not within the database applications. If the
rules are part of the database, they cannot be bypassed. While the SDS may withhold write
permissions from browser tools, maintaining the constraints in the database provides an extra
measure of protection. This also supports the future employment of browser tools as multi-
database read/write applications.

The second issue is one of understanding the context of a particular database. When users
formulate queries that span multiple databases, they are likely to encounter differences in the way
information is represented among those databases. This could lead the users to draw erroneous
conclusions from their query results because they do not understand the differences between the
databases. To limit the chances of this, component database developers shall provide
comprehensive information on their databases to be incorporated in the DBMS data dictionary
and the SHADE repository. This information is part of the database segment. At a minimum,
developers must provide comments for each data element and object (including triggers and
stored procedures) that explain its usage and (where appropriate) units-of-measure.

4.2.7 Client/Server Independence

The COE uses a client/server architecture. This applies to database services as well. Developers
must preserve the independence of their applications, functioning as DBMS clients, from the SDS.
Specifically, applications that access databases must not be built so that they have to reside on the
SDS in order to work correctly. It cannot be assumed that all operational sites will have a local
SDS. Further, where sites have a local SDS it may be on a separate machine that is dedicated to
the DBMS, or the server may be collocated with the application on a single machine acting as the
application server and the SDS. To maintain independence and support the client/server
architecture, applications cannot assume they reside on the SDS.

To sustain the independence between DBMS clients and the SDS, developers must not mix
extensions to the DBMS with their databases and must separate the database from the
applications that use it. If specialized data management services are needed by particular
applications and are not part of the COE database services, the provision of such services must be
approved by and coordinated with the DISA Chief Engineer.

For example, assume some application needs a COTS expert system shell to manage a knowledge
base that is a component of the application and that interacts with the SDS. The expert system
shell, to work properly, has to be collocated with the DBMS. The expert system then becomes a
segment that is separate from the application that uses it.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 4-19

4.2.8 Distributed Databases

A distributed database is one whose data is spread across multiple sites. Data is replicated in a
distributed database when copies of particular objects or records exist in more than one of those
sites. Data is fragmented when they are split among sites. Databases are distributed (fragmented
or not) to improve responsiveness and increase availability in systems that serve geographically
dispersed communities. Databases are replicated to enhance their survivability in the same
circumstances. In either case, one implementation objective of any distributed database is to
provide location transparency. This means that the user need not know where data is located to be
able to access or work on them.

Depending on the component database, the COE/SHADE has several flavors of distributed
databases. Some current databases are relatively static and are replicated at multiple sites, but
exist independently. They are updated through the periodic replacement of information at each
site that has a copy. Others, such as the JOPES Core Database, are dynamic and are replicated
concurrently across several sites for survivability. They use transactions to effect updates at the
affected sites. Some systems, like the Air Force’s Theater Battle Management Control System
(TBMCS), both replicate and distribute data on multiple servers within a site to distribute
processing and enhance survivability.

The COE provides distributed database management services for the developers of distributed
databases so they can maintain location transparency and distributed transaction processing. The
specific services implemented for a particular COE database system will depend upon the nature
of its distributed data and are the responsibility of that system’s Chief Engineer. GCCS, for
example, uses an asynchronous transaction model. A financial system may require the use of the
more restrictive, but synchronous, two-phase commit.

The technology that supports the distribution of databases as used in the DII COE is evolving
rapidly. The GCCS program, for example, does not at present prescribe a particular
implementation method. Developers of distributed databases must coordinate their activities with
the DII COE Chief Engineer and their program’s Chief Engineer to ensure that their approach can
be supported and is consistent with the objectives of the broader program. When a distributed
database is implemented, developers should keep in mind that the distribution plan (fragmentation
schema) may change over time. Distribution methods and the tools used to support them will also
evolve as technology matures. Where developers are assigned responsibility for database
fragmentation schemas, each fragment shall be in a separate segment so different schemas can be
implemented.

The distribution of data also means that users may have access to multiple SDSs. The assignment
of users to servers will depend on the distribution schema as implemented for the various sites.
The sites’ DBAs are responsible for aiming users’ processes at the correct SDS. Developers shall
not assume that users are attached to a particular server. Developers’ applications shall not
modify the user’s DBMS environment to associate them with a particular SDS. The
COE/SHADE data access tools facilitate transparent access to distributed data.

Database Integration Requirements

July 1997 DII COE I&RTS: Rev 3.04-20

4.2.9 Backup and Recovery

Database backup and recovery address the protection and preservation of information in SHADE
databases for DII COE-based systems. The current discussion addresses only those backup and
recovery issues specific to databases and database management systems. Conventional system
backup and recovery are addressed with the appropriate common support tools for the system as
a whole.

COTS DBMS software provides sophisticated tools to prevent data loss or corruption due to
system or media failure. Their tools are focused on transaction management with the overriding
goal of ensuring that the database can be recovered to a consistent state no matter when or how
failure occurs. In the most general sense, DBMS recovery mechanisms maintain transaction logs
that keep a continuous record of all database changes. In the event of a system failure, those logs
are applied to the database to remove incomplete transactions and recreate committed ones. In the
event of media (disk) failure, the last archived copy of any affected DBMS files is used together
with the transaction logs (archived and online) to ‘roll forward’ or recreate all changes that are
not in the restored DBMS file.

Execution of DBMS and database backup and recovery is the joint responsibility of a site’s
system and database administrators. DISA provides tools to assist them in executing their duties.
COE developers must implement their databases within the constraints of the DII COE tools and
the DBMS vendor tools. Support for special requirements, such as off-line archiving of
transaction logs, must be coordinated with the sponsoring COE program office and the DII COE
Chief Engineer.

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-21

4.3 Guidelines for Creating Database Objects

This section provides guidelines for developers in creating their database segments. Its objective is
to support consistency across different databases and improve the mutual independence of the
database federation. Also, the guidelines strive to make sure database segments do not
inadvertently affect each other.

Developers should strive to make all object names meaningful. Names must start with a letter of
the alphabet and may include letters, numbers, and underscores. Names may be 1 to 30 characters
in length (except for table names that are restricted to 1 to 26 characters) and cannot be a DBMS
reserved word (refer to Appendix F for a list of these reserved words). Case does matter when
creating names in the DII COE environment. While a specific RDBMS (such as Oracle) may not
be case sensitive in naming objects, there are some (such as Sybase) which are case sensitive. To
ensure consistency and portability of database objects and their elements, database object and
element names must be implemented in uppercase.

4.3.1 Database Accounts

Three categories of database accounts have been defined within the COE: DBAs, Owners, and
Users. They have different functions and levels of access to the DBMS based on those functions.

4.3.1.1 Database Administrators

The Database Administrator (DBA) accounts have access to all parts of the DBMS. They are to
be used only for system administration. Their use by database segments is prohibited except
during the installation process as discussed in Chapter 5.

4.3.1.2 Database Owners

The Database Owner (DBO) accounts are the creators and owners of the data objects that make
up an application’s database segment. The name must be unique within the COE community and
approved by the SHADE Chief Engineer to avoid naming conflicts. Developers will normally use
the segment prefix or a variation of it as the owner account name. The segment prefix will also be
used as the database schema name and will be incorporated in database file names as discussed
below. Owner accounts must have their password changed after a database installation. Users
shall not use the owner accounts to connect to databases. Developers shall not grant the DBA
privilege to owner accounts.

All of the database segment’s installation, except the definition of physical storage, the creation of
the DBO, and the creation of database roles, must execute using the DBO account and password.
After a successful installation of the data store segment, the DBO account’s password must be
changed and its connect capability must be disabled.

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-22

4.3.1.3 Users

User accounts belong to the individuals accessing COE databases. Each individual must have a
unique user account. User account naming conventions are defined by the individual COE
program office (e.g. GCCS Chief Engineer) and will usually be the same as the user’s operating
system account. The user’s account name must be unique within a specific COE database server
and may be required to be unique within a COE program. Creation and maintenance of user
accounts are a site-DBA responsibility within the rules provided by the specific COE program
office. Developers shall not assume the existence of particular users and shall not create user
accounts.

The creation of accounts that perform database services is an exception to the rule that developers
not create user accounts. Such accounts support autonomous processes, such as message parsers,
that access a database on their own. These processes cannot connect to a database using the DBO
account for reasons of security and data integrity, but their identity must be known to developers
for their specialized database permissions to be set up correctly. Such accounts will be defined by
the developer and created as a part of the segment installation.

4.3.2 Physical Storage

Database management systems provide file management transparency across multiple host
computer systems by hiding the details of file storage from the database’s data objects. At the
same time, however, the placement of data objects on physical storage devices has an effect on
system and database performance due to disk contention and other file system access issues.

Developers cannot assume that DII SDSs have uniform hardware configurations. Some will have
disk arrays, possibly mirrored, that appear as a single, large mount point; others will have multiple
mount points representing separate disks or several mirrored arrays. Further, it cannot be assumed
that existing hardware configurations will remain static or that current disk-mirroring technologies
will remain in use. DII developers, therefore, shall not use ‘raw’ partitions, but shall place all files
in their segment’s directory tree. DISA will provide software tools to insulate developers from the
SDS’s physical implementation. DISA or the cognizant DOD program office is responsible for
providing the core configuration for a COE database server. The site’s administrators are
responsible for configuring installed servers for optimum performance.

4.3.2.1 Data Store/File Standards

The DBMS-managed components of a database segment can be grouped into functional sets
based on their use within the segment. These functional sets are defined as a data store. Data
stores are physically kept in database files whose implementation varies depending on the DBMS
being used. A segment’s database will normally consist of two functional sets (data and indexes)
and hence two data stores. The data store identifier will incorporate the database segment prefix
and the function of the data store. GSORTS_DATA is an example of a data store name.

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-23

Developers shall define one or more data stores for their database segments. The objective is to
allow data files to be spread across multiple, physical storage devices based on the data store’s
function within the DBMS. Data store names must be meaningful and use a maximum of 30
characters (uppercase letters, numbers, and underscores). As discussed earlier, the name is case
sensitive and only uppercase letters will be used. No DBMS reserved words will be used.

Data store names must also be associated with the segment and function. Most applications will
have either two or three data stores: Data, Indexes, and (if needed) Static data. The following
naming convention is to be used:

<segment prefix>_DATA,
<segment prefix>_INDEX, and
<segment prefix>_STATIC

for the three storage areas respectively. The Logs within a Sybase database are treated as data
stores in a Sybase implementation.

4.3.2.2 Data Storage Implementation

Database segments shall create their data stores through the segment’s PostInstall
descriptor.

Database segments shall use the COECreateDS API to implement physical data storage. This
API allocates physical storage and creates the data store. For Sybase, this includes the storage
area for logs. COECreateDS hides the SDS’s implementation of physical storage. In this way
the database segment is insulated from the physical server implementation, whether it uses raw
devices or file system directories, has disk arrays, or uses other storage techniques. Figure 4-6
illustrates data store allocation.

Where COECreateDS is not available, developers will provide the scripts to create their data
stores and the operating system files associated with them. Data files will be created in the
DBS_files subdirectory of the database segment using the API provided by the DBMS
vendor. One or more data files may be created to support each storage area. The method for file
creation varies with the DBMS being used. See Appendix F for DBMS-specific file creation
information. The data file names should be chosen so they are clearly associated with the storage
area. The recommended naming convention is

<segment prefix>_<store type><n>.dbf

where ‘store type’ is the storage area’s purpose (e.g. index) and ‘n’ is a one-up serial number for
the file. An example data file name is gsorts_data1.dbf.

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-24

Database
Definition

Script

CREATE_DS
Service

RDBMS
Server

DBSORT_DATA

Disk 1

DBSORT_INDEX

Disk 2

DBSORT_LOG

Disk 3

Database Storage

Query DDL

Request

Status

CREATE_DS DBSORT < DBSORT_LIST

where DBSORT_LIST file contains:

DBSORT_DATA 1,000K
DBSORT_INDEX 1,000K
DBSORT_LOG 300K LOG

Figure 4-6: Data Allocation

4.3.3 Database Definition Scripts

A database definition script is a shell script that contains all database definition commands for a
specific database object. These objects include tables, views, triggers, and stored procedures. The
name of the script is the same as that of the database object it defines. Depending on the object
type, multiple sections can be defined within one file to perform all the data definition functions
required for that specific database object.

The scripts used to create data objects are also used by database administrators in the
maintenance of the databases and the SDS. DII database administrators have to manage
thousands of data objects (tables, views, etc.) spread across multiple database owner accounts.
Routine maintenance such as rebuilding corrupted indexes or views can become impossible
because the DBA cannot locate the script file that contains the object’s definition among the
thousands of scripts on the SDS. To avoid these problems, DII developers must organize their
Data Definition Language (DDL) commands into a series of database definition scripts. These
scripts must conform to a particular file naming convention and structure.

The database definition script is structured to execute various database definition commands
based on the input argument given to it. This functionality is implemented with a case statement
that executes on the input argument. Table 4-1 lists the input arguments to be used for database
definition scripts. See Appendix F for examples of data definition commands.

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-25

A database definition script for a table should contain all constraints, triggers, and indexes for the
table. Legacy views (see subsection 4.3.4.3) of the table, if authorized by the cognizant DOD
configuration management authority, may be included in the table’s definition script. Other views
must be created using their own scripts. Rules, stored procedures, packages, and other objects
should each be created in their own separate scripts.

Database roles that are associated with a database schema, such as a default read-only role, can be
provided with a database segment’s definition scripts. The grants for that role, since it is part of
the segment, can be incorporated into the table and view definition scripts. Grants to database
services accounts (e.g. message parsers) can also be incorporated in those scripts. Database roles
that are associated with applications or those whose grants span multiple database owners must
be created using their own scripts. These scripts should include all the grants needed for the role
regardless of the object’s owner. Such grants should be segregated by owner.

The CREATE_DATA_STORE argument for a database definition script should only be used when
the COE tool COECreateDS is not available.

4.3.4 Database Objects

The definition of a database schema – the set of data objects, their interrelationships, constraints,
and rules for access or update – is the responsibility of the developers. Developers of application
database segments shall not duplicate data objects that are part of the corporate databases
provided by DISA. Where possible and appropriate, developers should take advantage of and
share objects belonging to other databases as found within the SHADE repository. If a database
segment does not meet the full needs of the developer, changes should be proposed to the
cognizant DOD configuration authority for the database segment meeting most of the needs. The
developer may choose to develop a similar database segment, pending resolution of the change
request. To facilitate sharing of data, developers shall provide the definitions of their schema
components for inclusion in the DBMS data dictionary as discussed in section 4.1. Definitions for
data stores, tables, elements, stored procedures, and views are stored in the system’s data
dictionary tables as comments. The maximum length allowed for the description is 255 characters.
In addition, narrative information on all these databases should be provided during Segment
Registration so developers can access their definitions in the COE online services (see
Chapter 10).

Developers shall provide DISA with their proposed database schema early in the segment design
process. The schema will be reviewed for duplication of objects in other component databases.
See Chapter 3 for more information on the database segment development cycle.

4.3.4.1 Database Tables

Database tables are the objects that store data records. Within a database schema, data elements
will be logically grouped to form tables. Table names must be meaningful and a maximum of 26
characters in length (uppercase letters, numbers, and underscore). This size differs from the 30
characters available to other objects because of the legacy view naming convention (see

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-26

section 4.3.4.3). If Oracle database snapshots are being used for data replication services for other
sites, developers should limit the table name to 20 characters. Oracle will use the remaining six
characters to identify the internal tables and views that support a database snapshot. No reserved
words may be used in the table name.

Argument Purpose
CREATE_DATA_STORE create a data store (use CREATE_USER to create

the DBO account first)
DROP_DATA_STORE remove a data store
CREATE_ROLE create a database role
DROP_ROLE drop a database role
CREATE_RULE create a Sybase rule
DROP_RULE drop a Sybase rule
CREATE_TABLE create a database table
DROP_TABLE drop a database table
CREATE_VIEW create a database view
DROP_VIEW drop a database view
CREATE_CONSTRAINT create a database constraint (i.e. foreign key)
DROP_CONSTRAINT drop a database constraint
CREATE_INDEX create an index
DROP_INDEX drop an index
UPDATE_INDEX perform update statistics for Sybase indexes
CREATE_USER create a database user account
DROP_USER drop a database user account
DISABLE_LOGIN Revoke connection privileges (login) from a

database account
ASSIGN_GRANTS assign grants to a user or role/group
REVOKE_GRANTS revoke grants from a user or role/group
LOAD_DATA load a table with data (from within the command

script)
CREATE_PROCEDURE create a stored procedure or database package
DROP_PROCEDURE drop a stored procedure or database package
CREATE_TRIGGER create a database trigger
DROP_TRIGGER drop a database trigger
CREATE_SEQUENCE create an Oracle sequence
DROP_SEQUENCE drop an Oracle sequence
REGISTER_DATA load application data (i.e., configuration parameters)

Table 4-1: Definition Script Arguments

The creation of tables in System-owned storage areas (e.g. the Oracle SYSTEM tablespace or the
Sybase master database) is prohibited. The tables must be created in storage areas created by and
belonging to the application database segment. When creating a table, the storage area name must

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-27

be specified. “Create table” statements must stipulate NOT NULL or NULL constraints for each
column because different DBMSs may default differently on this constraint type.

4.3.4.2 Data Elements

Data elements are the columns or fields within a schema that are grouped together into tables.
Data element names shall comply with DOD standards from the DOD Data Model (DDM) and
Defense Data Dictionary System (DDDS) where applicable. Within a schema developers should
use the same characteristics (data type, length, number precision, default values, constraints, and
definition) for all occurrences of the same element name. If elements are chosen from the DDM,
they shall use the data type and units of measure prescribed in the standard.

Developers shall not use data types that are machine-dependent. This applies primarily to numeric
data. Data elements may be shared across tables and data stores, and across COTS DBMS
servers. As an example, the ‘float’, ‘double’, and ‘real’ data types are machine-dependent in both
Oracle and Sybase. See Appendix F for more information on data types available in specific DII
COTS DBMS and which are machine independent.

The use of default values and declarative constraints is recommended to ensure data integrity and
consistency. Developers must balance this against instances where invalid data items must be
forced into the system, especially when dealing with real-time data. In such cases declarative
constraints could cause data loss.

4.3.4.3 Database Views

A view does not actually contain or store data, but derives its data from the objects on which it is
based. These objects can in turn be tables or other views. View names must be meaningful and a
maximum of 30 characters in length (uppercase letters, numbers, and underscore).

Views are often used to restrict users’ access to vertical (columnar) or horizontal (row-wise)
subsets of data tables. Views can also be used to hide data complexity when displaying related
information from multiple tables or to present data from a different perspective than that of the
base table. Views can provide location transparency for local and remote tables in a distributed
database, a convenient way of storing complex queries, and isolation of applications from changes
in definitions of base tables.

Views can be queried, updated, inserted into, and deleted from, with restrictions. All operations
performed on a view affect the base tables of the view. Current DBMSs are limited in their ability
to support updates through views. If developers need updateable views, the DBMS’s capabilities
and restrictions must be kept in mind. If the updateable views are required for security or data
privacy, developers should not grant users access to the base tables, only to the views.

In general, the following restrictions apply to updateable views.

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-28

· Horizontal (row-wise) views: SDSs can support inserts, updates, and deletes through
horizontal views. Such views include those where one table is used to constrain the view to a
subset of rows in another table. Developers are responsible for implementing appropriate error
handling if users try to insert a row that duplicates a hidden row or that contains a value in the
restricting column(s) the users are not permitted to see.

· Vertical (columnar) views: SDSs can support updates and deletes through vertical views as

long as the database constraints do not reference hidden columns. Inserts can only be
supported if all hidden columns are allowed to be null or if triggers are provided to populate
them with default values. Developers are responsible for implementing appropriate error
handling if a user’s update violates a constraint on a hidden column.

· Multi-table views: At present, the SDSs implemented in the COE cannot consistently

support data modifications through views of more than one table. Developers should
implement such updateable views in applications. These views should be accompanied by
comparable read-only views of the individual tables.

A view is dependent on the objects referenced in its defining query. All of these objects must
exist, and the required privileges to these objects must have been granted to the owner of the view
before the view is created. Views will be created in a database segment as part of its install
process.

Legacy Views are views created to support applications written against earlier versions of a
database object. Such views make the object appear as it did in an earlier version of the database
segment. They support read-only legacy applications. Applications that need to update data will
not be able to use legacy views. Code modifications required to update data in the new data
structures will need to be coordinated with data structure changes.

The decision whether to require Legacy Views rests with the DII COE Chief Engineer working
with the affected program’s Chief Engineer on a case-by-case basis, although developers may
choose to do so on their own. In most cases, DISA will require Legacy Views only for Shared or
Universal public databases whose tables support a large number of read-only users.

When Legacy Views are provided, they must be implemented in the following manner. When a
database table is created, a view that maps directly to the table must also be created. When the
database table is modified, the view of its previous version is also modified so that applications
accessing the view are unaware of them, and a view that maps directly to the new structure is
created. This method allows applications that access the table to continue to operate if immediate
source code modifications are not possible. Applications must eventually be modified, but in the
meantime views can be maintained to support previous versions of the table. Figure 4-7
demonstrates the use of legacy views across four versions of a database table.

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-29

SO
R

TS
M

_B
ID

ES
Ta

bl
e

SO
R

TS
M

_B
ID

ES
_0

01
V

ie
w

A
pp

lic
at

io
n

A
Le

ga
cy

A
pp

lic
at

io
n

B

Le
ga

cy
A

pp
lic

at
io

n
C

•
V

er
sio

n
4.

0
of

 th
e

SO
R

TS
M

_B
ID

ES
 ta

bl
e

is
re

le
as

ed

•
SO

R
TS

M
_B

ID
ES

_0
01

 le
ga

cy
 v

ie
w

 d
el

et
ed

•
SO

R
TS

M
_B

ID
ES

_0
02

 le
ga

cy
 v

ie
w

 u
pd

at
ed

•
SO

R
TS

M
_B

ID
ES

_0
03

 c
on

ve
rt

ed
 to

 le
ga

cy
 v

ie
w

•
SO

R
TS

M
_B

ID
ES

_0
04

 c
re

at
ed

 a
s

di
re

ct
 v

ie
w

•
A

pp
lic

aa
tio

n
A

 m
us

t b
e

up
da

te
d,

 th
us

 q
ue

rie
s

th
ro

ug
h

SO
R

SM
_B

ID
ES

_0
04

 v
ie

w

•
A

pp
lic

at
io

n
B

 n
ot

 u
pd

at
ed

, t
hu

s
qu

er
ie

s
th

ro
ug

h
le

ga
cy

 v
ie

w
SO

R
SM

_B
ID

ES
_0

02

•
A

pp
lic

at
io

n
C

 n
ot

 u
pd

at
ed

, t
hu

s
qu

er
ie

s
th

ro
ug

h
le

ga
cy

 v
ie

w
SO

R
SM

_B
ID

ES
_0

03SO
R

TS
M

_B
ID

ES
_0

02
V

ie
w

SO
R

TS
M

_B
ID

ES
_0

03
V

ie
w

SO
R

TS
M

_B
ID

ES
_0

04
V

ie
w

V
er

si
on

 4

SO
R

TS
M

_B
ID

ES
Ta

bl
e

SO
R

TS
M

_B
ID

ES
_0

01
V

ie
w

Le
ga

cy
A

pp
lic

at
io

n
A

Le
ga

cy
A

pp
lic

at
io

n
B

A
pp

lic
at

io
n

C

•
V

er
sio

n
3.

0
of

 th
e

SO
R

TS
M

_B
ID

ES
 ta

bl
e

is
re

le
as

ed

•
SO

R
TS

M
_B

ID
ES

_0
01

 le
ga

cy
 v

ie
w

 u
pd

at
ed

•
SO

R
TS

M
_B

ID
ES

_0
02

 c
on

ve
rt

ed
 to

 a
 le

ga
cy

vi
ew

•
SO

R
TS

M
_B

ID
ES

_0
03

 c
re

at
ed

 a
s

a
di

re
ct

 v
ie

w

•
A

pp
lic

at
io

n
C

 u
pd

at
ed

 to
 q

ue
ry

 v
er

sio
n

3
st

ru
ct

ur
e

•
A

pp
lic

at
io

n
B

 n
ot

 u
pd

at
ed

, t
hu

s
qu

er
ie

s
th

ro
ug

h
le

ga
cy

 v
ie

w
 S

O
R

SM
_B

ID
ES

_0
02

•
A

pp
lic

at
io

n
A

 n
ot

 u
pd

at
ed

, t
hu

s
qu

er
ie

s
th

ro
ug

h
le

ga
cy

 v
ie

w
 S

O
R

SM
_B

ID
ES

_0
01

SO
R

TS
M

_B
ID

ES
_0

02
V

ie
w

SO
R

TS
M

_B
ID

ES
_0

03
V

ie
w

V
er

si
on

 3

SO
R

TS
M

_B
ID

ES
Ta

bl
e

SO
R

TS
M

_B
ID

ES
_0

01
V

ie
w

Le
ga

cy
A

pp
lic

at
io

n
A

A
pp

lic
at

io
n

B
A

pp
lic

at
io

n
C

•
V

er
sio

n
2.

0
of

 th
e

SO
R

TS
M

_B
ID

ES
 ta

bl
e

is
re

le
as

ed

•
SO

R
TS

M
_B

ID
ES

_0
01

 v
ie

w
 is

co
nv

er
te

d
to

 a
 le

ga
cy

 v
ie

w

•
SO

R
TS

M
_B

ID
ES

_0
02

 c
re

at
ed

 a
s

a
di

re
ct

 v
ie

w

•
A

pp
lic

at
io

ns
 B

 a
nd

 C
 a

re
 u

pd
at

ed
to

 q
ue

ry
 v

er
sio

n
2

of
 th

e
SO

R
TS

M
_B

ID
ES

 ta
bl

e
st

ru
ct

ur
e

•
A

pp
lic

at
io

n
A

 n
ot

 u
pd

at
ed

, t
hu

s
it

qu
er

ie
s

th
ro

ug
h

le
ga

cy
 v

ie
w

SO
R

SM
_V

ID
ES

_0
01SO

R
TS

M
_B

ID
ES

_0
02

V
ie

w

V
er

si
on

 2

SO
R

TS
M

_B
ID

ES
Ta

bl
e

A
pp

lic
at

io
n

A
A

pp
lic

at
io

n
B

A
pp

lic
at

io
n

C

•
V

er
sio

n
1.

0
of

 th
e

SO
R

TS
M

_B
ID

ES
 ta

bl
e

is
re

le
as

ed

•
A

 S
O

R
TS

M
_B

ID
ES

 v
ie

w
 is

cr
ea

te
d

th
at

 is
 a

 d
ire

ct
m

ap
pi

ng
 to

 th
e

SO
R

TS
M

_B
ID

ES
 ta

bl
e

•
Th

re
e

ap
pl

ic
at

io
ns

 (A
,B

,C
)

qu
er

y
th

e
SO

R
TS

M
_B

ID
ES

ta
bl

e
th

ro
ug

h
th

e
SO

R
SM

_V
ID

ES
_0

01
 v

ie
w

SO
R

TS
M

_B
ID

ES
_0

01
V

ie
w

V
er

si
on

 1

Figure 4-7: Legacy Views

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-30

View names for legacy views shall consist of the table name followed by a three-character table
sequence number. They will be a maximum of 30 characters (uppercase letters, numbers, and
underscore). Example legacy views are NID_ACFT_003 and IDBIND_001, where the first is a
view representing the third release of the NID aircraft table and the second is a view representing
the first release of the Integrated Database (IDB) individuals table.

4.3.4.4 Rules on Database Objects

Rules on database objects incorporate several different concepts. Their underlying purpose is to
maintain database integrity through the enforcement of the constraints and business rules of the
database.

For purposes of this document, the following definitions apply. Constraints are restrictions on
data elements with respect to the values they may contain. For example, a country-code data
element could be constrained to the set of Defense Intelligence Agency (DIA) prescribed two-
character country codes. Business Rules are restrictions that occur in the context of database
operations that affect multiple interrelated objects and elements or that are beyond the ability of a
constraint to express them. For example, any update to a facilities table may require that an entry
be written to an audit table recording the ID of the user making the change and the time at which
it was made.

Within the SDS, developers may use DBMS constraints, stored procedures, rules, packages, or
triggers to implement either constraints or business rules. The choice among these will depend on
the capabilities of the COTS DBMS being used.

4.3.4.4.1 Constraints

Developers should define all entity integrity constraints and referential integrity constraints that
apply to their database schemas. The information in these constraints is vital for maintaining
database integrity. Entity integrity should be enforced whenever possible using default, unique
values, and check constraints. Domain Keys (e.g. the SQL Check constraint) should be used to
maintain the validity of column values. Unique columns should be constrained rather than indexed.
While the DBMS may use an implicit index, as Oracle does, to enforce uniqueness, defining the
constraint clearly documents the database design for the users. Database primary keys, foreign
key constraints, delete cascade actions, and update/delete restrictions should be used to maintain
referential integrity.

Primary and foreign keys convert logical relationships that are implicit in the database design into
explicit relationships. Primary keys identify unique physical records. Foreign keys relate primary
keys to data in other tables by requiring each value in a column or set of columns to match those
in a primary key in the referenced table. Foreign key constraints enforce referential integrity by
preventing invalid data entry into the database tables.

Where appropriate, constraints should be used to supply default values for columns. The
NULL/NOT NULL constraint must be explicitly stated for each column in all tables because
different DBMS implementations may behave differently with respect to nulls.

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-31

Constraints must be explicitly named. Constraint names must be meaningful and must not use
reserved words or default names. They may not exceed 30 characters (uppercase letters, numbers,
and underscore). The recommended naming convention is

<table name>_<cons>

where ‘table name’ is the name or abbreviated name of the table or table and columns involved in
the constraint and ‘cons’ is PK for a Primary Key, FK for a Foreign Key, or CK for a Check
constraint. Foreign key constraint names should incorporate references to both tables. Examples
of constraint names are IDBF_PK, EWIRD1_EMIT_FK, and ACFT_USR_CTRY_CK.

In most cases developers will wish to create their constraints after the data fill has been completed
in order to speed up the fill process. The implicit index that accompanies a Primary Key or Unique
constraint will slow the data fill significantly. Constraints should not normally reference data
objects that are outside the database segment. See below for methods to implement inter-database
constraints when they are needed.

Constraints should still be included in a database segment even when they cannot be enforced. If
developers must allow invalid data items into their database, as may be the case when processing
real-time data, they may not be able to enforce declarative constraints without losing information.
Constraints should still be defined, but disabled (e.g., by using Oracle’s disable constraint
command) so that users and administrators can understand the database schema. The
ReleaseNotes segment descriptor and the comments on the object stored in the data
dictionary shall state that these constraints are deliberately disabled so the site’s DBAs know that
it is intentional. If constraints must be left disabled, the developers are responsible for providing
tools that support cleanup of invalid items.

4.3.4.4.2 Stored Procedures

Database stored procedures and functions consist of a set of DBMS commands (e.g. SQL
statements, and Oracle PL/SQL or Sybase Transact-SQL constructs) that are stored in the
database and can be invoked by an application to perform a task or a set of related tasks. Stored
procedures and functions can be used to obtain tighter control of database access. In addition,
they improve performance by reducing the amount of information that travels over a network and
because they do not require interpretation prior to their execution. The use of stored procedures
and functions also reduces memory requirements as only a single copy is loaded into memory for
execution by multiple users.

Stored procedures are used to maintain database integrity or to enforce business rules when the
constraints imposed are too complex for simple SQL constraints. These procedures are stored in
the database and can be executed from any environment in which an SQL statement can be issued.
A maximum of 30 characters (uppercase letters, numbers, and underscore) may be used for the
stored procedure name. Procedure names should incorporate the name of the object(s) they

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-32

modify and some meaningful indication of their functions without using reserved words. Two
examples of stored procedure names are NID_UPDATE_PROC and GSORTS_FETCH_UNITID.

Stored procedures should not normally reference data objects that are outside the database
segment. See below for methods to implement inter-database stored procedures when they are
needed.

Database stored procedures are installed after all of the database objects defined in the database
segment have been installed. In general, the stored procedures in a database segment should
support integrity checks that are typically invoked by triggers. A database segment may also
provide stored procedures that perform standard access functions against the segment’s tables.
These access functions can provide better performance and reduce maintenance efforts if
underlying structures are changed.

4.3.4.4.3 Triggers

A database trigger is a procedure that is automatically executed when a triggering event occurs on
the associated table. A trigger can only be defined on a table and will fire whenever the associated
event occurs on the table or a view of that table. The action of a database trigger may cause
another database trigger to fire. Triggers can be used to generate derived column values,
implement complex security rules, perform auditing, maintain table replication, prevent invalid
transactions, and enforce referential integrity.

Most triggers will be used to maintain database integrity. Others may be used to signal or send
data to other, interrelated or dependent database segments. Triggers may also be used to support
the proper replication of data and to perform data conversions. They are not to be used to start
application processing based on data entry. Trigger names must be meaningful (the table name
and trigger type should be part of the trigger name) without using reserved words. They may use
a maximum of 30 characters (uppercase letters, numbers, and underscore). An example of a
trigger name is TAC_REMARKS_UPD_TRIGGER.

Triggers should not normally reference data objects that are outside the database segment.
Database segments should not install triggers on data objects outside the segment. See below for
methods to implement inter-database triggers when they are needed.

Database triggers are installed after all of the database procedures are installed. This order is
prescribed because triggers may invoke stored procedures. A trigger’s body may contain DBMS
commands (e.g. Transact-SQL or PL/SQL blocks) or it could invoke stored procedures to
perform the same functions. The use of stored procedures to support triggers is recommended for
performance and maintainability.

4.3.4.5 Indexes

An Index is an optional structure associated with a table that is used to quickly locate rows of that
table or to ensure that a table does not contain duplicate values in specific columns when a

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-33

uniqueness constraint cannot be used. Indexes speed up retrieval when applications query a table
for a range of rows or for a specific row by providing a faster access path to data. Indexes are
logically and physically independent of data. The creation or deletion of an index may occur at any
time and does not affect the data stored in the associated table. Furthermore, creation or deletion
of indexes only affects the speed of data retrieval, but does not prevent any applications from
functioning. Once created, indexes are maintained by the RDBMS and are automatically updated
when the data change due to addition, deletion or modification of rows. The presence of many
indexes on a table decreases performance when inserting, updating, or deleting data as the
associated indexes must also be updated. Indexes also require storage in the DBMS; the use of
multiple indexes requires more storage.

Index names must be meaningful without using reserved words. A maximum of 30 characters
(uppercase letters, numbers, and underscore) may be used for the index name. It is recommended
that the index name incorporate a reference to the table and column for clarity. Developers should
review the capabilities of the DBMS before indexing small tables (less than 4000 rows). Indexing
small tables can actually hurt performance if the DBMS searches the index instead of reading the
entire table into memory. The DBMS’s query optimizer may ignore indexes on small tables.
Indexes should not be used in place of Primary Keys or Uniqueness constraints.

When considering a column or group of columns for an index, keep the following guidelines in
mind:

· Indexes should not be used in place of primary keys or uniqueness constraints. If the DBMS
treats nulls in a manner that prohibits the enforcement of these constraints, developers should
use a unique index to maintain data integrity.

· To minimize lock/device contention when insertions occur frequently, clustering should

always be performed on a key that is statistically more “random” than other keys and is usable
in many queries. This is generally not the primary key. Prime candidates for clustering keys
include columns accessed by range or used in Order By, Group By or Joins. For example,
Date/Time could be a good index key for event data. Long strings generally make poor
indexes.

· Too many indexes can hurt performance of inserts, deletes, and updates.

· Prime candidates for non-clustered indexes are columns used in queries when the data being

accessed is less than 20% of the data in the column.

· Keep the size of the key as small as possible to improve index storage and data retrieval.

· Indexes help select statements and hurt inserts/deletes. Consider when most of your

operations will use the index and, if so, whether the overhead required for the index is worth
it.

· Storage of indexes in a separate data store can improve database performance.

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-34

· The ordering of columns in SQL ‘where’ clauses may affect the behavior of the DBMS query
optimizer. Check the DBMS vendor’s documentation to identify such effects and use the
vendor’s evaluation tools to assist in optimizing DBMS commands.

· Consider using the various index types offered by the DBMS. B-Tree indexes are good for

range selections and ordered retrieval, but can suffer performance problems when used on
large sets of ordered, sequentially appended (e.g. time series) data. Hashed indexes are fast,
but do not easily support ordered retrievals. Bit-mapped indexes are efficient for binary fields
like sex.

4.3.5 Database Roles

A database role, in the general sense, is a group of access privileges for database objects. These
roles implement the discretionary access controls discussed in subsection 4.2.5. Database roles
also simplify the management of user privileges within the DBMS. They are created by the
database segment developers or the developers of applications accessing databases to define sets
of access privileges that can be given to users by their sites’ DBA. Role names must be
meaningful (the database or application name should be part of the group or role name) without
using reserved words. They may be a maximum of 30 characters (uppercase letters, numbers, and
underscore). Developers should strive to associate roles and their privileges with the applications
accessing the database. Each role should have only the privileges needed by the application it
supports.

As discussed in subsection 4.2.5.2, active database permissions should be limited to the minimum
set needed for the session in progress. Such permission sets are specific to an application’s
connection to the database. This means that each application requiring access to any database
object must have a well-defined database role that includes only the privileges needed by the
application and that the role/group be granted only to users who are authorized to run the
application. In this case, it is the responsibility of the database segment which supports an
application’s software segment to create the specific database role for the application and to
connect to the DBA account (see the COEPromptPsswd API in Appendix C) to assign the
grants on the required objects to the newly created role. The DBA account has all necessary
privileges to assign grants on any object to any role.

A Shared database segment must provide generic “read-only” roles because of the dependencies
of other segments upon it; it may provide “read/write” roles. Developers may create more generic
roles or groups that consist of a set of privileges (such as read-only or read/write) on a group of
objects (such as all of the objects in a database or some subset of them). Such roles are usually
created to provide read-only access to an entire database for users of browsers or query builder
tools. In this case, it is the responsibility of the database segment that creates those objects to also
create the generic role/group and assign the grants on the required objects to the newly created
role/group. Such generic roles are useful when widely used, large, read-only databases such as the
NID must be implemented. Such generic database roles should be used with caution as they may

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-35

grant applications more privileges than they really need. Generic database roles should seldom, if
ever, be used to grant write permissions. Database developers who implement generic roles or
groups must balance the advantages this type of role against the risks of unnecessary or excessive
privileges.

Consider the following example. A database segment named TEST has five tables: MASTER,
DATA1, DATA2, REF1, and REF2. Two applications, APP1 and APP2, are associated with the
segment. The segment should have two read/write roles, TEST_APP1_RW and
TEST_APP2_RW, one to support each application. It could also, optionally, have a read-only
role, TEST_RO, for users of browser tools. If only one read/write role were created, then users of
APP1 could inadvertently modify data that should only be changed using APP2 and vice versa.

When applications are not developed by the database segment developer, the application
developers are responsible for creating the roles required to access the database through their
applications. The access requirements for such roles must be defined by the application developers
and included in the information provided during Segment Registration as discussed in Chapter 3.
The permissions required by application’s database roles are subject to review by DISA and by
the associated database segment’s sponsor. These roles will be granted the privileges required to
run the application. These privileges may include: delete, insert, select, and update for tables and
views; and execute for procedures, functions, and packages. Grants of privileges to roles are
discussed in the next section.

In order for the privileges on objects to be assigned to a role, the grantor must have permission to
do so, and those database objects must exist. When application developers define database roles
to support their applications and those roles are not part of the principal database segment, the
roles and the grants that enable them become part of a database segment that is dependent on the
database segment or segments that create the referenced objects. See subsection 4.3.7 for more
information on inter-database dependencies.

Database roles shall not be granted to DBAs. Their administrative privileges already allow them
to grant roles to users without owning the roles. The database roles that are part of the COTS
DBMS shall not be altered by developers.

4.3.6 Grants

Grants are the permissions on database objects that allow users to access data they do not own.
When a database object is first created, the only account that can access its contents is the owner
of that object. Users must be explicitly granted permission to access an object. Privileges that can
be granted include: delete, insert, select, and update for tables and views; and execute for
procedures, functions, and packages. Privileges that should not be granted include index and alter
for tables. Grants allow the DBA to administer and the DBMS to enforce the discretionary access
controls required. As discussed in the section on database roles, developers should grant only the
minimum set of permissions needed for the applications that access their databases. Grants should
be made to roles/groups and not to individual users.

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-36

Consider the previous example. APP1 is used to create and modify records in DATA1. It uses
MASTER and REF1 as lookup tables. APP2 has the same function for DATA2 using MASTER
and REF2 as lookup tables. The read/write role associated with APP1, TEST_APP1_RW, should
be granted the select privilege on MASTER and REF1, and select, insert, update and delete on
DATA1. It should have no privileges on REF2 or DATA2. TEST_APP2_RW, the read/write role
for APP2, would have select on MASTER and REF2; select, insert, update and delete on
DATA2; and no privileges on DATA1 or REF2. TEST_RO, for users of browser tools, would
have the select privilege, only, on all five tables.

Granting data access to DBMS ‘PUBLIC’ users is prohibited. Granting data-access privileges to
user accounts with the ‘GRANT OPTION’ or granting administration privileges on database roles
is prohibited. Developers shall not make grants of application-level permissions to DBA accounts
or to database roles used for DBMS administration. Where segments’ applications or databases
need special permissions on DBMS objects (e.g. query Oracle’s ‘v$’ tables), the developer must
request them from the DII COE Chief Engineer. Such grants should be kept in a separate
database definition script (to be executed by the DBA) within the database segment that needs
them.

4.3.7 Inter-Database Dependencies

Inter-database dependencies occur whenever database objects in a segment are dependent upon
objects in some other database segment. A database object is a dependent object if it references
any other object(s) as part of its definition. When a dependent object is created, all of its
references to other objects must be resolved. If it has dependencies on non-existent objects, the
dependent object may not already have been created or it may have to be validated when the
objects it references come into existence. The creation of a dependent object may also fail if its
owner does not have the appropriate access to all referenced objects. If the definition of any of the
referenced objects is altered, the dependent object may not function properly or may become
invalid.

Dependent objects that reference objects created, managed, and maintained by the same database
segment do not introduce inter-segment dependencies. In contrast, dependent objects that
reference objects in other segments do add complexity to the installation, de-installation,
administration, and maintenance of a database segment. Before using dependent objects,
developers must balance the advantages of dependent objects against the disadvantages of
introducing segment dependencies.

Database segments with intersegment dependencies sometimes benefit from smaller storage and
reduced data redundancy. Using data objects that belong to other segments frees up the storage
that would otherwise be used for replicas of those objects. When replicated objects are eliminated,
changes to those objects need not be propagated across multiple database segments. At the same
time, having only one copy of a widely referenced table is likely to increase data quality and
currency. Eliminating copies of data objects also reduces the processing load on the SDS by
eliminating duplicate updates when changes are made.

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-37

Such dependencies also affect the modularity and scaleability of the SDS. Dependent segments
must be installed after the database segment they reference. Further, as is the case with other
segment types, dependencies can easily propagate when placed on segments that are, in turn,
dependent on other segments. Furthermore, when inter-segment dependencies are defined,
circular dependencies can be created. A circular dependency exists when two segments depend on
each other. In such cases, neither segment can be installed because both require the other to be
installed first. If a circular dependency cannot be resolved, then the two segments may have to be
merged into a single, larger segment or the dependent code can be moved to a third segment. The
dependency of one database segment on another segment’s data objects could require the
installation of multi-gigabyte databases so that one or two of their tables can be used by some
other segment.

Because of the tradeoffs involved in the employment of dependent objects, their use in DII
systems is subject to review and approval of the DII COE Chief Engineer.

Where inter-database dependencies are needed they shall be implemented such that the object(s)
creating the dependency are owned by the database segments that they belong to. This means that
a foreign key constraint belongs in the segment with the table it constrains, not in the segment
with the table it references. A post-update trigger added to a table belongs in the segment with
that table, not in the segment of the table it updates. Such dependencies may have to be placed in
separate database segments that modify the segment owning the object that creates the
dependency. See Chapter 5 for more information on segmenting databases that have
dependencies. The Requires descriptor for such database segments must identify all
dependencies on other database segments. In addition, the Database descriptor must be used to
identify the data object(s) being referenced in other segments so that DISA can choose the most
effective segmentation strategy for databases that are widely used.

The following sections describe how developers should implement inter-segment dependencies
that may occur through the use of dependent objects, constraints, and database roles.

4.3.7.1 Data Objects

Database segments will have dependent data objects (tables or views) when their information
needs can be partially satisfied from tables or views contained in other database segments. If an
external table fully satisfies the information needs, it should be referenced directly. Developers
may use a dependent view to extract subsets of information from external tables or views or to
change the presentation of information (e.g. change units of measure or combine columns).
Developers may use views to combine internal tables with external objects to provide information
supersets. Also, a table could reference an external object either as a source of constraints or,
through a trigger, as a provider of data.

Names of objects created in other schemas must identify the inter-database linkage. Otherwise
they are subject to the naming restrictions of their object type. Developers are responsible for
ensuring that their object’s names do not conflict with those already in the schema.

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-38

A table will be dependent on another database segment if its constraints reference objects in that
other segment or if it is populated or maintained using a trigger based on an external object.
Developers may also create a table that is a superset of an external object to avoid creating and
maintaining partially redundant objects. That table would then be combined with a view that joins
it with the external object. Developers must use an ‘outer join’ when defining such a view/table
combination unless appropriate triggers are created to prevent decoupling when updates occur to
either the internal or external table.

A view that references a table (or view) outside its own segment is dependent on the database
segment containing the base table (or view). Once such a view has been created, it will become
invalid and have to be recreated if its base table (or view) is modified, renamed, or dropped. Any
privileges or synonyms on the invalid view also become invalid until it is recreated.

Developers shall not create indexes on objects in other database segments. Indexes have
significant impact on system performance. While they speed retrieval of records, indexes slow
updates to tables. The effect of uncontrolled index proliferation could dramatically damage the
overall functioning of a DII system. If developers desire indexes on tables in other database
segments, they must request them from the SHADE Chief Engineer. DISA will work with the
other segments’ sponsors and developers to assess the effect of additional indexes. If, based on
overall requirements, the request is approved, the segment responsible for the creation of the table
will be modified to also create the index(es) required by other segments.

4.3.7.2 Rules in Other Databases

Database segments have dependent constraints or business rules when their integrity constraints
or operations involve objects from other segments. Such rules may include foreign keys that
reference another schema’s tables or triggers that propagate updates based on another schema’s
transactions.

Any rules – whether they are constraints, triggers, or procedures – shall be created in the schema
of the object they are attached to. Names of rules created on other schemas must identify the
inter-database linkage as well as the rule’s function. Otherwise, they are subject to the naming
restrictions of their object type. Developers are responsible for ensuring that their rule names do
not conflict with those already in some other schema.

Developers may create constraints in their own schema that reference objects in other database
segments. They may not create or modify constraints on objects in other schemas. Such
constraints could invalidate otherwise legal updates to the other database. When additional
constraints are needed on objects in other database segments, developers must request them from
the SHADE Chief Engineer. DISA will work with the other segments’ sponsors and developers to
assess the effect of these constraints. If, based on overall requirements, the request is approved,
the segment responsible for the creation of the table will be modified to also create the
constraint(s) required by other segments.

Guidelines for Creating Database Objects

DII COE I&RTS: Rev 3.0 July 1997 4-39

Developers may create triggers and stored procedures or functions on objects in other schemas as
long as they do not modify or update the other database’s information and do not change the
constraints or business rules of the other database. It is permissible, for example, to use a ‘post-
insert’ trigger to copy data from an external data object to one in the developer’s database
segment. It is prohibited, by contrast, to use such a trigger to change data in that other segment’s
table.

Excessive use of triggers can result in complex interdependencies that may be difficult to
maintain. When implementing a specific function via triggers, developers must keep in mind that a
database transaction will rollback if execution of the associated trigger(s) is not successful.
Trigger developers must implement exceptions to handle errors or unexpected results that may
occur during the execution of a trigger. These exception handlers must ensure that a trigger fails
‘open’ and allows the owning segment’s database transactions to complete regardless of the
processing of the dependent trigger. If additional triggers and stored procedures or functions are
needed in other database segments, developers must request them from the SHADE Chief
Engineer. DISA will work with the other segments’ sponsors and developers to assess their effect.
If, based on overall requirements, the request is approved, the segment owning the object affected
by these triggers, stored procedures, or functions will be modified to incorporate them.

4.3.7.3 Database Roles Spanning Multiple Databases

Developers may need to create roles whose permissions span multiple databases in order to take
advantage of their information and to correctly represent applications’ information needs. Since
database roles implicitly are created at the database server level, which segment they belong to is
irrelevant. However, all objects they reference must exist before the role may receive its grants.
Accordingly, such roles shall be part of a dependent database segment as discussed in Chapter 5.
That segment is dependent on every segment whose objects it references. It must list all of the
segments under its Requires descriptor. See Chapter 5 for more discussion of the Requires
descriptor.

Guidelines for Creating Database Objects

July 1997 DII COE I&RTS: Rev 3.04-40

This page is intentionally blank.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 5-1

5. Runtime Environment

This chapter describes the software configuration for the COE runtime environment. All
software and data, excepting low-level components of the COE kernel, are packaged as
segments. A segment is a collection of one or more software or data units most
conveniently managed as a unit. Segments are constructed to keep related units together
so that functionality may be easily included or excluded.

There are six segment types corresponding to the different types of components that may
be added to a system:

1. COTS: A segment totally comprised of commercial off-the-shelf software.

2. Account Group: A segment that serves as a template for establishing a runtime

environment for individual operators.

3. Software: A collection of executables, shared libraries, and static data that extend the

base functionality and environment established by an account group.

4. Data: A segment composed of a collection of data files for use by the system or by a

collection of segments.

5. Database1: A segment that is to be installed on a database server under the

management of the DBMS and ownership of the DBA. A Database segment can only
be installed on a database server and the installation tools enforce this. Note that a
database client application segment can be installed on any platform and usually is a
software segment type.

6. Patch: A segment containing a correction to apply to another segment whether data

or software. The corrections entail replacing one or more files.

In addition, segments may have attached characteristics, called segment attributes, which
serve to further define and classify the segment. There are six segment attributes2:

1. Aggregate: A collection of segments grouped together and managed as an indivisible
unit. (This implies that segments within an aggregate cannot be installed across
separate platforms.) The segment whose attribute is indicated as AGGREGATE is
called the parent and is considered to be the “root” segment. The parent segment name

1 Database server segments are supported only on UNIX servers for this release. Database application
segments may be created for either the UNIX or NT environment.
2 Subsection 5.5.1.10 discusses how to indicate segment attributes with the SegName descriptor. Segment
attributes are noted by the appropriate parameter within the $TYPE keyword of the SegName descriptor.
The parent for the aggregate is designated by the AGGREGATE parameter. The Child attribute is indicated
by the CHILD parameter. COE Component is subdivided into the COE CHILD and COE PARENT
parameters. Similarly, the Web attributed is subdivided into the WEB APP and WEB SERVER parameters.
Finally, the Generic attribute is indicated by the GENERIC parameter.

Runtime Environment

5- July 1997 DII COE I&RTS: Rev 3.05-2

is the name presented to an operator as the name of the aggregate. An aggregate can
have only one parent segment.

2. Child: A segment that is part of an aggregate, but is subordinate to a single segment

designated as the parent. An aggregate can have multiple child segments.

3. COE Component: A segment that implements functionality contained within the

COE, as opposed to a mission-application segment.

4. DCE: A segment that implements either a DCE server or a DCE client application.

The DCE attribute must be specified for any segment which uses DCE segment
descriptors.

5. Web: A segment that uses Web-based technology to create the application. A Web

segment is either a Web server, or a Web-application segment (e.g., a client
application). A user requires a Web browser to access Web-based segments.

6. Generic: A segment that is to be automatically added to all “usual” account groups

(see subsection 5.4.11). This feature allows a segment to participate in multiple
account groups without the need for the segment to explicitly name each account
group.

Note: The attributes listed here are often used in the vernacular as if
they are segment types (discussion of an aggregate segment, a
COE-component segment, a Web segment, etc.). Technically
such usage is incorrect because these are attributes and not types.
When discussing segments by attribute, it is implicitly understood
that there is an underlying segment type, usually software.

Segment installation is accomplished in a disciplined way through instructions contained in
files provided with each segment. These files are called segment descriptor files and are
contained in a special subdirectory, SegDescrip, called the segment descriptor
subdirectory. Sections within the segment descriptor files are called segment descriptors,
segment descriptor sections, or just descriptors. The segment descriptor files embody a
technique that allows a segment to “self-describe” itself. That is, the segment descriptor
files contain pertinent information describing the segment, such as the segment name and
type. This information is used by other software in the COE and other segments that need
to access functionality contained within the segment. But the descriptive information is
also used by people to aid in the integration process, to aid in security analysis of the
segment, or in configuration management. Installation tools process the segment
descriptor files to create a carefully controlled approach to adding/deleting segments
to/from the system. The format and contents of the segment descriptor files are the central
topic of this chapter.

Principles contained in this chapter are fundamental to the successful operation of the
COE and achieving DII compliance is largely determined by how well developers apply
the details given in this chapter. Appendix B summarizes the compliance requirements

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 5-3

stated in this chapter into a series of checklists organized by Category 1 compliance levels.
Developers are required to adhere to the procedures described herein to ensure that
segments can be installed and removed correctly and that segments do not adversely
impact one another. Unless otherwise noted, all requirements apply to both UNIX and
NT.

Note: In this chapter and throughout the I&RTS mention is made of
occasions when approval is required by a Chief Engineer. Unless
otherwise stated, this means the DII COE Chief Engineer for
COE-component segments and mission-application segments that
affect interoperability. All other references refer to the Chief
Engineer responsible for the mission-application segment (e.g.,
GCCS Chief Engineer, ECPN Chief Engineer). The Chief
Engineer is not necessarily a DISA engineer, and will not be for
the majority of the mission-application segments. Likewise, use of
the term SSA refers to the responsible SSA unless otherwise
qualified.

New and Obsolete Features

5- July 1997 DII COE I&RTS: Rev 3.05-4

5.1 New and Obsolete Features

This DII COE release includes a number of improvements over previous COE releases. A
list of the more significant improvements is provided here for developers who are already
familiar with a previous DII COE release.

The present release is backwards compatible with previous DII COE releases. Segments
presently in use do not require modification to work with the features described here.
However, certain features from previous JMCIS and GCCS COE releases are now
obsolete and support for them will eventually be phased out. Obsolete features are listed in
a subsection below.

All of the features from the previous I&RTS have been preserved. Segments which have
been migrated to any version of the DII COE do not require additional work to be
compatible with this issue of the I&RTS. Compliance-level requirements have not been
increased with this release, but the compliance criteria in Appendix B have been reworded
and reorganized for clarity.

Periodic modifications to the DII COE and the I&RTS are made for several reasons:

· to address non-UNIX environments,
· to allow extension to other problem domains,
· to provide support for new and emerging technologies,
· to generalize the COE concept,
· to improve site installation and administration of segments,
· to simplify or clarify certain segment descriptor files,
· to further reduce integration problems,
· to meet emerging mission requirements, and
· to apply lessons learned.

5.1.1 New Features

This subsection summarizes new features in this release that were not present in the
previous I&RTS release. Its purpose is to serve as a handy reference of new features for
developers already using the DII COE.

· Database applications are supported through SHADE. Descriptor information is
provided in this chapter.

· The concept of data scope (local, global, segment, etc.) is extended to encompass

database scope (e.g., unique, shared, universal).

· The draft PC-based COE from the previous I&RTS release has been formalized and

incorporated as appropriate to this Chapter. It is further described in Chapter 6.
Several new descriptors and keywords have been added to support PC NT
applications.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 July 1997 5-5

· Support is provided to add NT registry entries (see the Registry segment
descriptor).

· Standard NT file extensions (e.g., .TXT, .EXE, and .BAT) are supported for

segment descriptor files.

· Web-based applications are supported and are described further in Chapter 7.

Descriptor information is provided in this chapter.

· Guidance and support for DCE applications is provided. DCE-based applications are

described further in Chapter 8. A new set of descriptors (DCEClientDef and
DCEServerDef), a DCE segment attribute, and several new keywords are provided
to describe DCE segments.3

· The $KEY keyword is added to enforce certain requests (such as installation with

“root” privileges) that require Chief Engineer approval.

· The location for shared libraries is now specified (i.e., in the segment’s bin

subdirectory).

· Child components in an aggregate may now have a conditional load attribute. This is

described more fully below, but it allows a child segment to be loaded only if it
represents a newer version than what is already on disk.

· The concept of a generic segment is added. A generic segment is automatically made a

member of every account group, except those which are character-interface-based.
The segment may also specify account groups that it is to be excluded from.

· Support is added for three new types of processes: RunOnce, Privileged, and Periodic.

Privileged is available for UNIX only, but the other two are available for both UNIX
and NT. RunOnce processes are executed the first time the system is rebooted, but not
thereafter. Privileged processes are those which require “root” permissions to execute.
Periodic processes are the UNIX equivalent of cron processes, permitting a segment
process to be run at specified intervals.

· Support is added to allow site installers to temporarily install a segment to test it
before installing it on the rest of the system.

· Support is provided to allow site administrators to create application servers that

contain software for multiple platform types. Support is included for “dynamic
loading” of segments.

3 In this I&RTS release, DCE servers are available on UNIX platforms only. DCE client applications may
be on UNIX or NT platforms.

New and Obsolete Features

5- July 1997 DII COE I&RTS: Rev 3.05-6

· Segments may add executables to run during the user profile creation/deletion just as
with the account creation/deletion process. Support is also added to allow executables
to be run when a profile switch is performed.

· The segment installer tool, COEInstaller, issues a warning to the operator
performing the installation if an attempt is made to load a segment that is an earlier
version of one that is already on the disk.

· The COEInstaller tool maintains a status log of segments as they are loaded and
provides the ability to print the status log. The status log may also include output from
scripts (such as PostInstall) that is normally sent to stdout or stderr.

· A $EQUIV keyword has been added to the SegName descriptor. In effect, this allows
a segment to be known by an alias.

· The Help descriptor has been added as a placeholder for future expansion. Its

purpose is to identify “help files” within the segment and their format (UNIX man
page, HTML, etc.).

· A “partial segmentation” process is defined (see subsection 5.7) that provides the
advantages of the segmentation philosophy but allows a COTS vendor’s distribution
media and approach to be utilized.

5.1.2 Obsolete Features

The features listed below are being phased out because changes were required to extend
the DII COE to address the Joint community, to address problem domains other than
command and control, and to extend to non-UNIX platforms. The previous release of the
I&RTS indicated most of these items as obsolete. They are collected here as a ready
reference. This release adds only one new requirement: usage of the $KEY keyword. This
keyword is used in instances where the I&RTS requires Chief Engineer authorization for
some requested feature, such as permission to create a COE-component segment. To
preserve backwards compatibility for existing features, VerifySeg only issues a
warning if the $KEY keyword is missing. An error is generated when the $KEY keyword
is missing for new features. Developers should begin using the $KEY keyword in all
appropriate places because a future release will issue errors instead of warnings.

Support is still provided for each of the obsolete items listed below, but documentation for
them has been removed from this release of the I&RTS. Segment developers and program
managers should upgrade4 to the latest DII COE to ensure future compatibility. Support
for the obsolete features may be removed from the next release. The tool VerifySeg
will issue warnings when run against old segments to identify obsolete features.

4 The obsolete features are primarily in the content and format of the descriptor files and should not
require any source code changes. The effort required to upgrade should be a matter of editing the segment
descriptor files and running VerifySeg. A tool, ConvertSeg, described in Appendix C is available to
automate the conversion to the extent possible.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 July 1997 5-7

· The MACHINE environment variable is now obsolete. The MACHINE_OS and
MACHINE_CPU environment variables should be used instead. Segment developers
should not depend upon MACHINE being defined.

· Individual segment descriptor files are now obsolete. The SegInfo descriptor file

should be used instead. It is divided into sections which correspond to the earlier
individual descriptor files. Conversion to SegInfo is required for Level 8
compliance.

· Subdirectories progs and libs are now obsolete. Subdirectories bin and lib

should be used in order to conform to conventional practice.

· The old format of the Data segment descriptor is obsolete. The size required is now

specified in the Hardware descriptor instead of the Data descriptor. Level 8
compliance requires uses of the new format.

· Previous versions of the COE allowed DEINSTALL, PostInstall, and

PreInstall to run with root privileges. This capability is no longer the default. The
$ROOT keyword must be used instead and Chief Engineer approval is required to run
with root privileges.

· Previous releases of the COE allowed a $PATH keyword in the Menus and

ReqrdScripts descriptors. This is now obsolete since the I&RTS specifies the
location of where files must be located relative to the segment's home directory.

· Segment descriptors ModName and ModVerify have been replaced with SegName

and SegCheckSum respectively. The SegType descriptor file has also been
replaced by the SegName descriptor file.

· In earlier releases, the parent segment for a child had to be listed in the Requires

descriptor. This is no longer required because by virtue of naming the aggregate parent
in SegName, there is an implied dependency. Child segments use the $PARENT
keyword to explicitly name the aggregate parent. The parent uses the $CHILD
keyword to explicitly name the children in the aggregate.

· The $COMPONENT keyword is now obsolete and is replaced by the $CHILD

keyword.

· Previous COE releases automatically provided a system menu bar. Applications must

now use the Executive Manager APIs to explicitly request a system menu bar.

Disk Directory Layout

5- July 1997 DII COE I&RTS: Rev 3.05-8

5.2 Disk Directory Layout

This subsection describes the COE approach for a standardized disk directory structure
for all segments. A standardized approach is required to prevent two segments from
overwriting the same file, creating two different files with the same name, or similar issues
that frequently cause integration problems. Unfortunately, such problems are often not
discovered until the system is operational in the field.

In the COE approach, each segment is assigned its own unique, self-contained
subdirectory. This subdirectory is called the segment’s assigned directory or the
segment’s home directory. The segment’s assigned directory is established at segment
registration time. It obviously must be unique among all segments that are installed in an
operational system. A segment is not allowed to directly modify any file or resource it
doesn’t “own” - that is, outside its assigned directory. Files outside a segment’s assigned
directory are called community files. COE tools coordinate modification of all community
files at installation time, while APIs to the segments which own the data are used at
runtime.

Figure 5-1 shows the COE directory structure. The root-level directory for the COE is
/h. Underneath /h, disk space is organized into the following categories (note the close
parallel to segment types):

COTS segment descriptors for installed COTS products

AcctGrps templates for establishing a runtime environment context

COE component segments constituting the COE

data subdirectory for shared (local and global) data files

Web subdirectory for Web-application segments

Segments one or more subdirectories for mission-application or other segments

USERS operator home directories with operator-specific items such as
preferences

TOOLS collection of useful tools for the development environment

Web-application segments are collected into their own subdirectory to segregate them
from all other types of applications. This is to make it easier to identify and control them
from a site-administration5 perspective. The Web-server segment is a COE-component
segment and therefore is located under the COE subdirectory. Web-application segments
may or may not also be COE-component segments, but they are placed under the Web

5 Web servers and mission-application segments will likely be placed behind a firewall to administratively
restrict platforms that outside users can gain access to.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 5-9

subdirectory in either case. If they are also COE-component segments, the specialized
processing performed for all other COE-component segments is done as well. The
installation tools automatically place Web segments in their proper location.

Figure 5-1 does not show other important disk directories, such as the UNIX /etc
directory. The /etc directory is one of a family of related directories which contain
UNIX system files. Other COTS products may require specific directories as well, and
there are other important system directories that are specified to each operating system.

...

OS
Extensions

RTE
Templates

COE
Component
Segments

shared
data

Mission Apps
and

Other Segments

Operators

Developers

Web
Applications

h

USERSJCALSGSORTSdataCOEAcctGrpsCOTS TOOLSWeb

Figure 5-1: DII COE Directory Structure

Developers may not directly alter or create files outside of their assigned segment
directory. DII compliance mandates strict adherence to this directive, with the following
exceptions:

1. Temporary files may be placed in the operating system temporary6 directory. For
UNIX, this is the directory pointed to by TMPDIR (typically /tmp). For NT, use the
applicable Windows API to locate the temporary directory. However, disk space is
limited so developers must use this temporary directory sparingly and shall delete
temporary files when an application is done.

2. Segments may place data files in the /h/data directory, and are required to do so

for shared data (see subsection 5.4.4).

6 For UNIX, the COE deletes all files in the temporary directory when the system is rebooted. This does
not occur for NT system. Developers should make it a habit to delete all temporary files when they are
finished and not rely upon the operating environment to delete them. This will ease porting problems and
is a matter of good programming practice.

Disk Directory Layout

5- July 1997 DII COE I&RTS: Rev 3.05-10

3. Operator-specific data files shall be placed in subdirectories underneath /h/USERS
(see subsection 5.2.2).

4. Files may be added to the /h/TOOLS directory. This is a community directory for

tools useful in the development process. Segments shall not place any files in this
directory which are required at runtime since this directory is not installed at
operational sites. This directory is described in subsection 5.2.3.

5. Segments may request that the COE tools modify community files during the

installation process.

6. Segments may issue a request to modify a file to the segment which “owns” the file.

This shall be done through use of, and only through use of, published APIs.

As software is loaded onto the system, the /h disk partition may eventually run out of
disk space. The COE installation software will automatically create a symbolic link7 to
preserve the logical structure shown in Figure 5-1, and delete the link when segments are
removed. Hence, Figure 5-1 represents a logical view, not a physical view, of file and
directory locations. Due to the potential need to relocate segments at installation time
based on available disk space, DII-compliant segments must meet the following
requirements:

· Segments shall use relative pathnames instead of absolute pathnames.

· Segments which use symbolic links to point to files contained within the segment shall

use relative pathnames for the link.

· Segments which use symbolic links to community files may use absolute pathnames as

long as (a) the segment can determine the community file’s location at install time and
(b) the segment can resolve linking to a community file which may itself be a symbolic
link.

· (UNIX) Segments which add an environment variable to the account group’s global

runtime environment for locating files within the segment shall use a single “home”
environment variable. Environment variables of this nature are normally required only
when the segment files are to be accessible by other segments. Addition of the “home”
environment variable is done by the segment installer through use of extension files
and must not be done directly by the segment.

To illustrate the last requirement, consider a segment that provides a continuous readout
of time-until-impact for a missile. Assume the segment’s assigned directory is
MissleTDA and it’s segment prefix is MSLE. The ReqrdScripts segment descriptor
(see subsection 5.5.2.22) is used to add the following to the account group’s .cshrc
file:

7 Symbolic links are called shortcuts in NT. They are not identical concepts but are sufficiently similar for
this discussion.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 5-11

setenv MSLE_HOME /h/MissleTDA

MSLE_HOME is called the segment’s home environment variable. Static data within the
segment can be referenced by $MSLE_HOME/data while executables may be referenced
by $MSLE_HOME/bin. This technique of using relative pathnames means that segments
can be easily relocated at development, integration, or installation time by modifying a
single environment variable.

The last requirement stated above does not apply to environment variables defined for use
purely within the software development environment. The COE requires that the runtime
environment be separated from the development environment. This is typically done by
separating environment variables and other settings into physically separate files. The
development environment is not present during runtime for the operational system.

Also carefully note that the last requirement stated above applies only to the account
group’s global runtime environment, not a local runtime environment. When a segment
executable is launched, it inherits the environment established by the account group
template. It may then add to its local runtime environment through techniques equivalent
to the C putenv()function.

The time-to-impact example illustrates additional COE requirements regarding definition
of a home environment variable.

· A segment home environment variable shall point to the segment’s assigned directory,
not a lower level subdirectory (e.g., point to the directory /h/MissleTDA and not
to the directory /h/MissleTDA/Scripts).

· (UNIX) A segment home environment variable, if added to the global environment,

shall be added through an environment extension file (see ReqrdScripts).

· If a segment home environment variable is required, it shall be named

segprefix_HOME, where segprefix is the segment prefix. Segments which use the
same segment prefix must ensure that only one segment defines a home environment
variable. This requirement assures that home environment variables are uniquely
named between segments.

· Segments shall not define a global environment variable that can be derived from an

already-defined environment variable. For example,

 setenv MSL_DATA $MSL_HOME/data

 is redundant and is therefore not allowed because the expression $MSL_HOME/data

can be used wherever $MSL_DATA can be used.

Disk Directory Layout

5- July 1997 DII COE I&RTS: Rev 3.05-12

· Segments shall not use the “~” character (or NT equivalent) to specify relative
pathnames in the runtime environment, whether to define a home environment variable
or any other environment variable.

UNIX allows statements of the form

source ~/Scripts/.cshrc.tst

in .cshrc, .login, and similar scripts. The “~” character is substituted at run time
with the name of the home login directory (as defined in the /etc/passwd file).
Suppose this statement were contained in a .cshrc file and, to prevent making duplicate
copies and managing updates to this file, another segment wishes to use the UNIX
source command to include this .cshrc file in its own environment. Any segment
wishing to source the example .cshrc file must duplicate the same disk directory path
structure (e.g., must have a Scripts subdirectory underneath the home login directory)
and must have a file called .cshrc.tst underneath the Scripts subdirectory. This
approach is problematic in the runtime environment because the login home directory is
different for every operator, and leads to difficulties in sharing environment settings.

Note: Developers should minimize the use of environment variables
whenever possible. The amount of memory the operating system
makes available to store environment variables is limited and is
therefore a scare system resource. Also, developers should bear in
mind that environment variables with shorter names require less
memory to store than environment variables with longer names.

5.2.1 Segment Subdirectories

DII compliance mandates specific subdirectories and files underneath a segment directory.
These are shown in Figure 5-2 for a general segment. The precise subdirectories and files
required depend upon the segment type. For example, a Scripts subdirectory is
required for account group segments. The Scripts subdirectory on a UNIX system will
normally contain, as a minimum, .cshrc and .login scripts. These serve as a template
for establishing a basic runtime environment. For software segments, the Scripts
subdirectory contains environment extension files.

Some of the subdirectories shown in Figure 5-2 are required only for segment submission
and are not delivered to an operational site. Runtime subdirectories normally required are
as follows:

data subdirectory for static data items, such as menu items or help files,
that are unique to the segment but will be the same for all users on
all platforms

bin executable programs and shared libraries for the segment

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 5-13

Scripts directory containing script files (This is usually not required for NT
platforms but, if required, the directory contains “batch” files.)

SegDescrip directory containing segment descriptor files.

* Required for segments with published APIs
+ Required for segment submission
1 For Database segments only
2 Recommended location for source code during development,

Required location for source code delivered to DISA.

h

IntgNotes
VSOutput

Seg

ScriptsSegDescrip bindata *man *include *lib +Integ

TestSuite

1install 1DBS_files 2src

Icons Menus fonts app-defaultskeytab HelpINI

Figure 5-2: Segment Directory Structure

The descriptor directory SegDescrip is always required for every segment. Its contents
are defined in later subsections. Segment developers may use arbitrary disk file structures
during the development phase, but segments shall conform to the structure shown prior to
submitting a segment to DISA. It is a violation of the COE to use a different subdirectory
name to fulfill the same purpose as any subdirectory shown as a required subdirectory, or
to use a different runtime directory structure than that shown in Figure 5-2.

For example, the subdirectory src is a recommended directory for the location of source
code during software development. Developers are free to use this name, or any other
structure convenient for their development practices. They must, however, use this
directory name for source code delivered to the DISA SSA. bin is a required
subdirectory and shall not be used for any purpose other than that stated in the I&RTS.

The distinction between the Scripts subdirectory and the bin subdirectory is subtle.
Files in the Scripts subdirectory are used to establish attributes of the runtime
environment. Scripts are used here in the sense of traditional UNIX, X Windows, or Motif
files (.cshrc, .login, etc.) that are usually referred to only during the login process or
in the establishment of a separate runtime session. Files of this nature are located in the

Disk Directory Layout

5- July 1997 DII COE I&RTS: Rev 3.05-14

Scripts subdirectory. Executable files may be created as a result of compiling a
program or may be written as a shell. Files of this nature implement executable features of
the segment and are located in the bin subdirectory.

Subdirectories install and DBS_files are only used for database segments. Their
use is described in subsection 5.4.5

Subdirectories underneath data depend upon whether or not the segment has menu or
icon files, uses DCE (subdirectory keytab), is NT-based and uses initialization files
(subdirectory INI), or needs additional fonts or app-defaults. During segment installation
(for UNIX platforms) special processing is performed on files within the app-
defaults and fonts subdirectories. See subsection 5.4.4 for more details. See
Chapter 6 for information on using “.ini” files on NT platforms.

The remaining subdirectories shown in Figure 5-2, except for src, are required in order
to submit a segment to DISA as follows:

include subdirectory containing C/C++ header files or Ada package definition
files for public APIs

lib subdirectory containing object code libraries for public APIs

man subdirectory containing UNIX “man” pages for public APIs

Integ subdirectory containing items required in the integration process

Segments which do not contain public APIs need not submit include, lib, or man
subdirectories. For those segments with public APIs, private APIs are not allowed in the
include subdirectory, nor are private libraries allowed in the lib subdirectory.

The Integ subdirectory serves as a convenient repository for information that needs to
be communicated from the developer to the integrator. The file VSOutput is required
for all segments submitted. The subdirectory TestSuite is required for all segments
which submit public APIs and is to contain source code for a program(s) which exercises
all APIs submitted. The file IntgNotes is required for all segments submitted and
contains a brief description of why the segment is being submitted (new features, bug
fixes, etc.). It also contains any special instructions that need to be communicated to the
integrator for proper segment integration and installation.

5.2.2 USERS Subdirectories

The COE establishes individual operator login accounts and provides a separate
subdirectory on the disk for storing operator-specific data items. The structure underneath
this directory is created and managed automatically as accounts are added and deleted by
the Security Administrator software. Developers who require access to any file maintained

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 5-15

here (last profile selected, location of operator preferences files, etc.) shall use COE-
provided APIs to access them and not rely upon a particular directory or file structure.

All users with valid accounts will have a subdirectory underneath /h/USERS. The
subdirectory name will have the same name as the login account name. As shown in Figure
5-3, operator accounts may be global or local in scope. A local account is platform-
specific, whereas global accounts are available from any platform on the LAN.

USERS

local global

Oper1
Oper2

Oper3

OperA
OperB

OperC

h

datadata

PrefsPrefs

Figure 5-3: Operator Directory Structure

The subdirectory Prefs underneath the operator's data directory is used to store
segment-specific operator preferences. DII compliance requires that segments store all
operator preference data here. A segment is responsible for creating its own subdirectory
(with the same name as the segment’s assigned directory) and any required files when the
segment first references the preferences data. The exact pathname for the Prefs
subdirectory will change each time a different operator logs in, thus segment software
shall use functions from the Preferences Toolkit APIs to retrieve the correct pathname for
the currently active operator account.

Account group segments define the environment variables USER_HOME and USER_DATA
to point to the correct operator directories. For the example in Figure 5-3, the following
assignments would be made when the user whose login account name is OperA logs in:

USER_HOME = /h/USERS/global/OperA
USER_DATA = /h/USERS/global/OperA/data

Note that USER_HOME is not defined to be /h/USERS/global/OperA/Scripts
which is the login home directory.

Disk Directory Layout

5- July 1997 DII COE I&RTS: Rev 3.05-16

Segments, such as the Executive Manager, may need to reference menu and icon files for
the operator’s currently-defined profile. However, the directory location for these files is
profile-dependent and will change during a login session if the operator changes profiles.
Segments must use functions contained in the Preferences Toolkit APIs to determine the
current profile. The environment variable USER_PROFILE is set by the account group
segment during login, but segments must use APIs from the Preferences Toolkit to access
files or directories related to individual operators, or to determine the current user profile.

DII compliance requires adherence to the following:

· Segments shall create subdirectories as needed under the operator’s Prefs
subdirectory for storing operator-specific data.

· Segments must work in an environment in which accounts are created and deleted.

This requires that a segment create and initialize missing operator-specific data files.

· Account group segments shall set the environment variables USER_HOME,

USER_DATA, and USER_PROFILE. (See footnote below. Account groups must still
set USER_PROFILE in the interim to support legacy usage.) No other segment shall
set or alter these environment variables.

· Segments shall determine the operator’s directory and profile exclusively through the

Preferences Toolkit APIs or the environment variables USER_HOME, USER_DATA,
and USER_PROFILE.8

5.2.3 Developer Subdirectories

Software for the runtime environment is obtained by loading the desired mission-
application segments and the required COE components. But the development
environment is provided separately as a Developer’s Toolkit because it is not delivered to,
nor required at, an operational site. The Developer’s Toolkit includes object code libraries,
header files which define the public APIs, and various tools. By convention, tools are
loaded underneath the /h/TOOLS subdirectory shown in Figure 5-1. This serves as a
convenient directory for software contributed by the community for general development
use.

5.2.4 Test Installation Subdirectories

The COE provides the ability for sites to temporarily install a segment on a platform to
test it before putting it on other platforms on the LAN. This is accomplished by the
COETestInstall tool, while removal of the test segment is accomplished by the
COETestRemove tool (see Appendix C). These tools create temporary directories for

8 USER_PROFILE is preserved for backwards compatibility only. The COE allows there to be multiple
active profiles so that an environment variable may not be the most appropriate way to determine the
current user profile. Developers must not directly access this environment variable because its use may be
phased out in a future release.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 5-17

storing the test segment and, if the segment already exists, COETestInstall moves
the old segment to a safe location so that it can be restored by COETestRemove once
the test is completed. Developers do not need to do anything special to their segment to
enable this capability. It is handled automatically by the tools.

5.2.5 Application-Server Subdirectories

To assist site administrators, the COE provides support for creating application servers.9

This is done by the tools COECreateAS, COEConnectAS, and COERemoveAS (see
Appendix C). The COECreateAS tool allows segments to be loaded onto a platform that
is to be configured as an application server. The application server may contain segments
for mixed hardware types (e.g., Hewlett Packard [HP], Solaris, DEC, International
Business Machines [IBM]). Figure 5-4 shows the directory structure maintained on the
application server.

The tool COERemoveAS removes segments from an application sever. The tool
COEConnectAS connects a client platform to an application sever. It also allows
“dynamic” loading of segments as explained in Appendix C.

The COE does not support installation of multiple versions on the application server, for
the same platform and operating system version. This could otherwise lead to problems if
two different versions of a segment for the same platform type were executed at the same
time. Temporary testing of a new segment version must be performed using the
COETestInstall and COETestRemove tools described in subsection 5.2.4

Developers do not need to do anything special to their segments to enable the application-
server capability. It is handled automatically by the tools.

h

AppsSvr

Seg1dataCOEAcctGrpsCOTS ...Seg2

Platform4
Platform3

Platform2
Platform1

Figure 5-4: Applications Server

9 Application servers are supported for UNIX platforms only in this I&RTS release.

Segment Prefixes and Reserved Symbols

5- July 1997 DII COE I&RTS: Rev 3.05-18

5.3 Segment Prefixes and Reserved Symbols

Each segment is assigned a unique subdirectory underneath /h called the segment’s
assigned directory. The assigned directory serves to uniquely identify each segment, but it
is too cumbersome for use in naming public symbols. Therefore, each segment is also
assigned a 1-6 character alphanumeric string called the segment prefix. The segment prefix
is used for naming environment variables and things such as public APIs and public
libraries where naming conflicts with other segments must be avoided. All segments shall
prefix their environment variables with segprefix_ where segprefix is the segment’s
assigned prefix. For example, the Security Administrator account group segment is
assigned the segment prefix SSO. All environment variables for this segment are therefore
prefixed with the string “SSO_”.

The segment prefix is also used to uniquely name executables and shared libraries. All
COE-component segments shall use the segment prefix to name executables and it is
strongly recommended that all segments follow the same convention. For example, a
proper executable for the Security Administrator account group is SSOSetClassif. A
properly named shared library would be SSOSampleLib.lib. This approach simplifies
the task of determining the files that go with each segment and reduces the probability of
naming conflicts.

Note: Use the segment prefix inside application code in situations where
it is important to distinguish one segment from another. For
example, when audit information is written to the security audit
log, the segment prefix is also written to the audit log to allow
determination of which application module generated the audited
event. The same advice applies to all audit logs, including those
maintained by the operating system or a DBMS.

It is sometimes convenient for segments to share the same segment prefix. This is true for
aggregate segments or for segments produced by the same contractor. The COE allows
segments to share the same segment prefix; however, the burden for avoiding naming
conflicts is placed on the segment developer.

Note: This means that segment prefixes are not guaranteed to be unique
and therefore cannot be used to uniquely identify a segment. Each
segment shall have a uniquely assigned directory and segment
name. Therefore, the name or directory in combination can be
used to uniquely identify a segment. There are situations where it
is more convenient to specify a segment’s assigned directory
rather than its name, such as in COEFindSeg, because the
directory name is typically shorter than the segment name and this
fact can be useful in speeding up character string comparisons in
segment searches. Furthermore, because the segment directory
will not have embedded blanks but the segment name may, the
segment name will not necessarily be the same as the assigned
directory name.

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 July 1997 5-19

The segment prefixes shown in Table 5-1 are reserved.

Segment Prefix Applicability
CBIF Character-Based I/F account group segment
CDE Common Desktop Environment segment
COE Common Operating Environment segment
DBA Database Administrator account group segment
DCE Distributed computing environment segment
DII Defense Information Infrastructure segment
ECEDI Electronic Commerce/Electronic Data Interchange

segment
ECPN Electronic Commerce Processing Node segment
EM Executive Manager segment
GCCS Global Command and Control System segment
GCSS Global Command Support System segment
INFRMX Informix COTS segment
JCALS Joint Computer-Aided Acquisition and Logistics

Support segment
JMCIS Joint Maritime Command Information System

segment
JMTK Joint Mapping Toolkit segment
MOTIF Motif
NIPS Navy NIPS segment
NT Generic NT segment
ORACLE Oracle COTS segment
OSS Navy OSS segment
SA System Administrator account group segment
SCO SCO-UNIX segment
SSO Security Administrator account group segment
SYBASE Sybase COTS segment
TIMS Navy TIMS segment
UB Navy Unified Build segment
UNIX UNIX operating system
USER prefix for operator-specific items
WIN generic Windows segment
WIN95 Windows 95 segment
WINNT Windows NT segment for 80x86 platforms
XWIN X Windows

Table 5-1: Reserved Segment Prefixes

Segment Prefixes and Reserved Symbols

5- July 1997 DII COE I&RTS: Rev 3.05-20

The COE sets five environment variables that must not be confused with the USER prefix
or the segment home environment variable.

· The HOME environment variable is set by the operating system to be the login
directory; that is, the login directory as contained in the UNIX /etc/passwd file.
This will normally point to a Scripts subdirectory while the segment “home”
environment variable (segprefix_HOME) is one level up from HOME.

· The USER environment variable is set by the operating system to be the login account

name and does not refer to a directory as does the USER prefix. Thus, USER_HOME
will be /h/USERS/$USER.

· The environment variables LOG_NAME, LOGNAME, and LOGIN_NAME are equivalent

to the USER environment variable10, but are not always present on every system.

The COE also includes a number of predefined environment variables that are required by
UNIX, NT, X Windows, and other COTS software. These environment variables are
either set automatically by the operating system or they must be set by an account group
segment. Other segments shall not alter these environment variables except as permitted
by environment extension files (e.g., extending the path environment variable).

Table 5-2 lists various important environment variables that are set by the applicable
account group, the parent COE-component segment, or the COE installation tools.

The COE sets environment variables MACHINE_CPU and MACHINE_OS to define the
hardware and operating system being used. This allows scripts and descriptors to perform
operations that are dependent on the hardware or operating system. Table 5-311 lists the
possible values set by the COE which either may be used as constants in #ifdef
constructs within descriptor files or as possible values for the appropriate environment
variable (e.g., MACHINE_CPU).

Note that the environment variables (e.g., MACHINE_CPU) will have one and only one
value, but several constants may be defined for use within the descriptor files. For
example, if the hardware platform is an HP715 running HP-UX 9.01, the MACHINE_CPU
environment variable will be set to HP715, MACHINE_OS will be set to HPUX, while the
constants HP, HP715, HPUX will be defined for use in descriptors.

10 USER is preserved for backwards compatibility with legacy pre-POSIX systems. LOGNAME is the proper
POSIX equivalent.
11 This list of constants will be updated as new platforms are supported. Refer to the DII COE Release
Notes and Version Description documents for details as new platforms are supported.

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 July 1997 5-21

Environment Variable Usage
COE_SYS_NAME string containing system name (e.g., “GCCS”)
+COE_TMPSPACE location of temporary space
*DATA_DIR /h/data
DISPLAY current display surface (UNIX only)
HOME user’s login directory
+INSTALL_DIR absolute pathname to where segment was installed
*LD_LIBRARY_PATH default location of shared X and Motif libraries

(UNIX only)
*LOGNAME user’s login account name
*LOG_NAME user’s login account name
*LOGIN_NAME user’s login account name
*MACHINE_CPU CPU type derived from uname -m
*MACHINE_OS Operating system derived from uname -s -r
path list of paths to search to find an executable
SHELL shell used (e.g., /bin/csh) (UNIX only)
+SYSTEM_ROOT absolute pathname to where Windows is installed

(applicable to PC-based COE only)
TERM terminal type (UNIX only)
*TMPDIR location of the system-defined temporary directory
*TZ time zone information (UNIX only)
USER user’s login account name
USER_DATA user’s data directory under /h/USERS/local

or /h/USERS/global
USER_HOME user’s home directory under /h/USERS/local

or /h/USERS/global
USER_PROFILE user’s current profile under

/h/USERS/local/Profiles or
/h/USERS/global/Profiles

*XAPPLRESDIR /h/data/app-defaults (UNIX only)
*XENVIRONMENT /h/data/app-defaults/COEBaseEnv

(UNIX only)
*XFONTSDIR /h/data/fonts (UNIX only)

Legend: * Environment variables set by the parent COE-component segment.
+ Environment variables set by the COE installation tools. These are

defined only at installation time.
All remaining environment variables are set by the applicable account
group segment.

Table 5-2: COE-Related Environment Variables

Segment Prefixes and Reserved Symbols

5- July 1997 DII COE I&RTS: Rev 3.05-22

MACHINE_CPU Environment Variable
Constant Platforms for Which Defined
DEC DEC Alpha platforms
HP700 HP 700 series platforms
HP712 HP712 platforms
HP715 HP 715 platforms
HP750 HP 750 platforms
HP755 HP 755 platforms
IBM IBM RISC 6000 platforms and PowerPC
PC386 Intel 80386 platforms
PC486 Intel 80486 platforms
PENTIUM Intel Pentium platforms
SGI Silicon Graphics platforms
SPARC Sun Sparc platforms
SUN4 Sun 4 platforms

MACHINE_OS Environment Variable
Constant Platforms for Which Defined
AIX IBM RISC 6000 platforms and PowerPC
OSF1 DEC Alpha platforms
HPUX all HP-UX platforms
IRIX Silicon Graphics platforms
NT all NT platforms
SOL all Solaris platforms
WIN95 all Windows 95 platforms

Miscellaneous Constants
Constant Platform for Which Defined
DEC all DEC platforms, regardless of OS
HP all HP platforms, regardless of OS
IBM all IBM platforms, regardless of OS
PC all 80x86 platforms, regardless of OS
SGI all SGI platforms, regardless of OS
SPARC all Sun Sparc platforms, regardless of OS

Table 5-3: Platform and Operating System Constants

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-23

5.4 Segment Types and Attributes

Segment types and attributes were briefly introduced at the beginning of this chapter. The
present subsection describes segment types and attributes in more detail. Segments are the
cornerstone of the COE approach, and proper determination of their type and associated
attributes determines how the COE handles them. Developers have considerable freedom
in building segments; however, there are some important considerations regarding them.

· Creation of an account group segment requires prior approval by the Chief Engineer.
Most account groups are predefined by the COE itself to establish DII-compliant
runtime environments. System designers will typically add an operator account group
that establishes the basic runtime environment for their system. Other developers will
not normally create account group segments.

· Creation of a COE-component segment requires prior approval by the DII COE Chief

Engineer.

· All COTS products shall be packaged as individual COTS segments, unless approved

by the DII COE Chief Engineer. This requirement is mandated to make it easier to
handle COTS licenses, and to ensure that a single version of a COTS product is in use.
Dependencies on COTS product versions must be identified and coordinated with
DISA to ensure that the proper version is supported by the COE.

· Segments shall not modify any file that lies outside the segment’s directory.

Community files may be modified only through public APIs or through requests made
to the COE installation tools.

Segment types are identified by the $TYPE keyword in the SegName descriptor.
Segment attributes are also specified in the $TYPE keyword by the presence of an
optional attribute parameter. See subsection 5.5.1.10 for details.

5.4.1 COTS Segment Types

The COTS segment type is used to describe the installation of COTS products. It is
preferable to structure a COTS product as a software segment, if at all possible, because it
provides more control over the installation and placement of the COTS product.
However, this is sometimes not possible because where COTS products will be loaded,
what environment extensions are required, etc. are often very vendor-specific.

The COE must retain segment information about all segments, including COTS products.
The segment descriptor information for all COTS segments is located underneath the
directory /h/COTS as shown in Figure 5-5. COTS software is not necessarily actually
stored in the directory /h/COTS. Frequently only the segment descriptor information is
stored there because the actual location of COTS products is often spread across several
subdirectories (such as /usr, /usr/lib/X11, and /etc).

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-24

Using UNIX as the example, Figure 5-5 shows the segment descriptor information for the
operating system (UNIX), the X Windows environment (XWindows), the Motif window
manager and libraries (Motif), and the Common Desktop Environment software (CDE).
These four subdirectories, along with the actual COTS software, are loaded with the COE
kernel. The example in Figure 5-5 also shows that the DCE COTS product has been
installed.

COTS

h

UNIX XWindows Motif CDEDCE

SegDescrip SegDescripSegDescrip SegDescripSegDescrip

Figure 5-5: COTS Directory Structure

COTS products sometimes have very specific requirements as to the location of files
within the product. The general approach to such segments is to create a temporary
segment structure in which to store the COTS product, copy the COTS files to their
required location during installation, and then copy the segment descriptor information to
/h/COTS. It is the responsibility of the PostInstall script to copy the COTS files to
their appropriate directories and to perform any other required initialization steps. The
installation software handles moving the segment descriptor information to the standard
location, /h/COTS.

For example, assume a COTS product called SampleCots is to be installed which
requires loading a series of files into /etc (files f1, f2, and f3), /usr/local (files
f4 and f5), and /usr/lib (files f6, f7, f8, and f9). A segment directory structure
can be set up in whatever manner is most convenient. Figure 5-6 shows one possible
solution. The installation software will load the segment SampleCots wherever there is
room on the disk and will set the environment variable INSTALL_DIR to the absolute
pathname to where SampleCots was loaded. The PostInstall script for this
example must recursively copy the subdirectories etc and usr from INSTALL_DIR to
/etc and /usr. The installation software will copy the segment descriptor information
to /h/COTS/SampleCots and then delete all files underneath INSTALL_DIR.

As an alternative, the COE allows a segment to specify exactly where it must be loaded.
This is done with the $HOME_DIR directive described in subsection 5.5. This reduces the
need to copy files from one directory to another, and eliminates the temporary disk space
required during installation (e.g., to temporarily store the segment when it is read from
tape, then copy it to its new location, then delete the temporary location).

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-25

SampleCots

etc usr SegDescrip

liblocal

f6
f7
f8
f9

f4
f5

f1
f2
f3

Figure 5-6: Example COTS Segment Structure

The segment descriptor FilesList (see subsection 5.5.2.13) is used to document
where a COTS product was installed. The FilesList descriptor for this example is

$PATH:/etc
$FILES
f1
f2
f3
$PATH:/usr
$FILES
local/f4
local/f5
lib/f6
lib/f7
lib/f8
lib/f9

To summarize the COTS segment type:

· COTS products should be installed as a software segment type if possible.

· The COTS segment’s PostInstall script is responsible for copying files to their

required location. The PostInstall script must ensure that enough space exists.

· The installation software places the segment descriptor information underneath

/h/COTS/SegDir where SegDir is the segment directory name chosen for the
temporary segment structure (SampleCots in the example above).

· The COTS segment’s PostInstall is responsible for deleting the temporary

segment structure after the installation is complete.

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-26

· COTS segments shall document what files are loaded and their location in the
FilesList segment descriptor.

· When practical, COTS segments should make symbolic links to the appropriate
location for their software instead of copying the files and directories. This allows the
installation software to make more effective use of the disk space available and avoids
the problem of running out of disk space for such common directories as /usr and
/etc.

Note: Developers should normally not include the vendor name in the
segment name because this makes the segment vendor-specific.
Other segments which then depend upon the COTS product are
affected because they then become vendor-specific as well. For
example, a segment name such as “DCE” is preferable to
“Vendor A DCE” because segments may specify a dependency on
a segment whose name is “DCE” rather than “Vendor A DCE.”
This is especially the case when the COTS product is the
implementation of an industry standard. However, it is sometimes
advisable to include the vendor name because the product truly is
vendor-proprietary. This is typically the case with an RDBMS.

5.4.2 Account Group Segment Types

An account group segment is a template for establishing a basic runtime environment
context that other segments may extend in a controlled fashion. An account group
segment determines

· the processes to launch,
· the order in which to launch processes, and
· the required environment script files (.cshrc, .login, etc.).

Account groups may also contain executables and data in the subdirectories identified in
Figure 5-2.

The COE provides several predefined account groups. They are located underneath
/h/AcctGrps shown in Figure 5-1. Important predefined account groups include the
following:

CharIF account group for character-based interfaces

DBAdm account group for database administrators

SecAdm account group for security administrators

SysAdm account group for system administrators

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-27

In addition to these account groups, COE-based system designers will generally create
their own account group for normal operator accounts (GCCS for the Global Command
and Control System, GCSS for the Global Command Support System, ECPN for the
Electronic Commerce Processing Node system, etc.). They will include CharIF if the
system supports a character-based interface and may include other account groups to suit
system mission requirements.

Figure 5-7 shows how the UNIX System Administrator account group is structured. It
demonstrates what account groups are for and how they are used in building a COE-based
system.

bin Subdirectory

Account groups utilize COE executables, located underneath /h/COE/bin, but will
usually include additional account group specific programs. These are located in the
account group’s bin subdirectory. DII compliance requires that executables within this
subdirectory use the segment prefix to avoid potential naming conflicts with other
executables.

AcctGrps

h

Scripts bin dataSegDescrip

.cshrc

.cshrc.dev

.cshrc.SA

.login
RunSA

Menus Icons Help

SysAdm

Figure 5-7: Example Account Group Directory Structure

data Subdirectory

Segment data specific to the System Administrator account group is located in the data
subdirectory. The Menus subdirectory contains menu files that have menu entries for all
options available from the basic System Administrator application. The segment
installation software may modify files contained here to add other menu options. Account
group menu files are used as templates from which profiles are created by including or

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-28

excluding desired menu items and execution permissions. The Icons subdirectory is
analogous, but defines icons for use by the desktop for launching applications.

Help files are located underneath the data/Help subdirectory and identified through the
Help segment descriptor. Refer to subsection 5.5.2.15 for more details on this segment
descriptor.

Scripts Subdirectory

A UNIX account group segment will usually contain at least the following two scripts to
establish the runtime environment:

.cshrc define environment variables

.login define terminal characteristics

Precise contents of these files is application-dependent. Other segments may be loaded to
extend the environment established by the account group. This is done through
environment extension files. DII-compliant account group segments shall name
environment extension files in the form

scriptname.segprefix

where scriptname is the environment file to be extended and segprefix is the segment
prefix. For the example shown in Figure 5-7, the environment extension files are:

.cshrc.SA extensions to the .cshrc file

.login.SA extensions to the .login file

Extension of the .login file is seldom required.

Environment extension files permit COE installation software to provide segment-specific
environment modifications. A segment uses the descriptor ReqrdScripts (see
subsection 5.5.2.22) to indicate which environment file to extend and the installation tools
modify the proper file within the account group segment.

For example, suppose the installation tools have loaded a segment underneath /h/SAOpt
and the SAOpt segment has an environment extension file named .cshrc.SAOpt in the
segment’s Scripts subdirectory. The installation tools will include the new environment
settings by inserting the following statements in the account group’s file .cshrc.SA:

if (-e /h/SAOpt/Scripts/.cshrc.SAOpt) then
source /h/SAOpt/Scripts/.cshrc.SAOpt

endif

The installation tools automatically remove these statements from .cshrc.SA if the
segment SAOpt is deleted.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-29

Account group segment developers shall ensure that environment extension files are
included and accounted for in the appropriate account group segment’s scripts. For
example, the .cshrc file shown in Figure 5-7 includes the following statements

if (-e $SA_HOME/Scripts/.cshrc.SA) then
source $SA_HOME/Scripts/.cshrc.SA

endif

to account for .cshrc extensions. Also note that the source command shall be of the
form

source $SA_HOME/Scripts/.cshrc.SA

rather than

source $USER_HOME/Scripts/.cshrc.SA

The COE-mandated form ensures a single copy of the environment extension file, updated
and maintained by the installation software.

The file .cshrc.dev shown in Figure 5-7 relates to the software development
environment. It is not a required file, but is described here as an example of how the
development environment can be accommodated, yet kept separate from the runtime
environment. In the example shown, developer preferences such as alias commands are
included in .cshrc.dev. These preferences must not be included as part of the runtime
environment. A technique such as

if ($?DEVELOPER) then
source $SA_HOME/Scripts/.cshrc.dev

endif

within the .cshrc file is required to achieve separation of the development environment
from the runtime environment. This technique will not work for certain files, such as
.mwmrc, because they do not support conditional statements.

Account groups must include the base environment established by the COE.
Subsection 5.4.8 describes the COE-component segments in more detail. The .cshrc
file in Figure 5-7 includes the base COE environment with the statements

if (-e /h/COE/Scripts/.cshrc.COE) then
source /h/COE/Scripts/.cshrc.COE

endif

The remaining files in Figure 5-7 contain similar statements to include other COE
environmental settings.

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-30

Account groups must also provide a script or program which launches the application.
This is the file named RunSA shown in Figure 5-7. DII compliance requires this file to be
located underneath the Scripts subdirectory.12

To summarize compliance requirements for account groups:

· Account group segments shall provide environment extension files of the form
scriptpname.segprefix, where scriptname is the name of the script which sets
the environment, and segprefix is the account group’s segment prefix. This must be
done for any files that other segments may extend (e.g., .cshrc.SA for the SysAdm
account group).

· Account group executables shall use the segment prefix to avoid naming conflicts.

· Account group segments shall not include the developer environment as part of the

runtime environment.

· Account group segments shall provide a single program or script with the name

Runsegprefix, where segprefix is the segment prefix, to initiate execution of the
account group’s application. This executable shall be located in the account group
segment’s Scripts subdirectory.

· Account group segments shall automatically include environment settings established

in /h/COE/Scripts.

· Segment developers shall not modify account group files except through use of the

installation software.

· Segment developers shall not override environmental settings established by the

account group. Segments may use environment extension files to expand the
environmental settings.

5.4.3 Software Segment Types

Software segments add functionality to one or more account groups. The account
group(s) to which the software segment applies is called the affected account group(s).
The directory structure for a software segment was presented in Figure 5-2.

Software segments frequently need to extend the runtime environment, add new menus
and icons to the desktop, and include new executables in the search path. Environment
extension files are located underneath the software segment’s Scripts subdirectory.
The ReqrdScripts segment descriptor indicates which environment files are to be
extended.

12 This program is required for backwards compatibility and as an aid to integrators and testers. It may be
phased out in a future release because the program is not necessarily used in the operational system,
depending upon the characteristics of the system desktop.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-31

Software segments provide additional menu and icon files underneath the segment’s
data/Menus and data/Icons subdirectories respectively. The segment descriptors
Menus and Icons are used to describe where the new items are to appear on the
desktop. At installation time, the menu and icon files from all contributing segments are
added to the affected account group. This then serves as a master template of all possible
functions provided within the account group. Profiles are then created by selectively
including or excluding functions within this master template.

UNIX segments that provide executables must ensure that the bin subdirectory is
included in the search path. This is accomplished by including a statement of the following
form in a .cshrc extension file:

set path =($path $segprefix_HOME/bin)

The segment shall append its bin subdirectory, and only its bin subdirectory, at the end
of the search path, not the beginning. An implied aspect of this requirement is that
segments cannot depend upon a specific loading sequence, other than that a segment will
not be loaded until after all segments it depends upon are loaded. A specific requirement is
that segments shall not insert the current working directory (i.e., “.”) into the search path.

DII compliance requires the following:

· Segments shall not make separate copies of executables from other segments, the
operating system, or other COTS products.

· Segments shall use environment extension files as necessary to extend the environment

established by the affected account group.

· Segments shall use the segment prefix to name objects whenever conflicts may arise

with other segments.

· Segments shall be completely self-contained. Dependencies on, or conflicts with, other

segments shall be specified through the appropriate Requires or Conflicts
segment descriptors.

· Segments shall not insert the current working directory into the search path for
executables.

· (UNIX) Segments shall include their bin subdirectory at the end of the search path,

not at the beginning nor in the middle.

5.4.4 Data Segment Types

Data files are most often created explicitly at runtime by a segment or loaded as part of the
segment itself. However, the ability to load data as a separate segment is useful when there
is classified data, optional data, large amounts of data, or data that may not be releasable

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-32

to all communities. The COE supports five categories of data grouped according to data
scope, how the data is accessed, and where the data is located:

Global Data in this category means that every platform, every application,
and every operator on the LAN accesses and uses exactly the same
data. Global data is made available through Network File Server
(NFS) mount points or some similar technique. Examples of global
data include the track database and message logs. Global data is
located in subdirectories underneath /h/data/global.

Database This category is similar to global data but is used to provide data fill
for a database segment. Examples of this kind of data include
intelligence databases, JOPES data, and TPFDD data. Data is loaded
into the appropriate objects previously created by a database segment
in a database server. Database segments are discussed further in
subsection 5.4.5. Data segments for databases are usually removed
after successfully loading data into the database server.

Local Local data is limited in scope to an individual platform. All platform
users and applications access the same data, but the data may (and
frequently will) differ from one platform to another. Examples include
overlays and briefing slides, although the COE provides techniques
for exporting these to other platforms. Local data is located in
subdirectories underneath /h/data/local.

Segment Segment data is local to a platform, but is managed and accessed by a
single software segment. This data is located under the segment’s
data subdirectory (e.g., SegDir/data where SegDir is the
assigned directory) and is typically static data used for segment
initialization.

Operator Data in this category is specific to an operator and is the most limited
in scope. Typical examples include preferences for map colors,
location of various windows, and font size. Operator data is stored in
a data subdirectory underneath /h/USERS created for the operator
when the operator login account is created, as described in
subsection 5.2.2.

There are some important considerations with respect to these data categories:

· Data is not necessarily available to an operator or process even if the data scope would
otherwise permit it. Discretionary access controls limit access based upon the security
policy of the system.

· In some cases, data that could be global is replicated on every platform to improve

system performance. For example, World Vector Shoreline data is identical for
everyone on the LAN, and hence meets the criteria for the global data category.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-33

However, for efficiency, this data may be replicated on each platform which requires
maps and is thus considered local.

· Distinction is made between segment data and local data because it affects where the

data is stored on the disk. Local data for all segments is stored in a single place to
make it easier for doing data backups. Because segment data is normally static, it does
not usually need to be archived and remains with the segment.

Segment data created at runtime or loaded as part of the segment does not require any
special consideration by the COE. The remainder of this subsection will deal with the COE
requirements for local and global data, and then present an example of how a data segment
is structured for local, global, and segment scope.

global and local Subdirectories

Figure 5-8 shows the directory structure for global and local data. The COE runtime
environment sets the environment variable DATA_DIR to point to /h/data. Segments
shall use this environment variable to reference global or local data. The segment which
owns the local or global data is responsible for creating and managing its data
subdirectories underneath $DATA_DIR/local and $DATA_DIR/global. Assuming
the segment’s assigned directory is SegDir, the segment shall create a subdirectory of the
form SegDir/data under $DATA_DIR/local and/or $DATA_DIR/global as
appropriate.

For example, suppose a segment that does Anti-Submarine Warfare (ASW) planning is
located underneath /h/ASW and it will create both global and local data. Then the ASW
segment must create the subdirectory $DATA_DIR/local/ASW/data for local data
and the subdirectory $DATA_DIR/global/ASW/data for global data.

The COE mandates that local and global data be structured in this fashion for the
following reasons:

· Centralizing data makes it easier to archive and restore. A simple data archive/restore
utility can be created without needing to know how many segments are loaded in the
system.

· Separating data from software makes it simple to load the software without

destructively overwriting existing data. This is especially important as segments are
upgraded.

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-34

* NT only

data

h

local global app-defaultsfonts

COE UB JCALS

data

...

data data

GSORTS JCALS ...

datadata

*Registry

Figure 5-8: Data Directory Structure

· Collecting all global data under a single directory reduces the number of NFS-type
mount points and improves overall network performance.

· Organizing data into a standard structure simplifies training and simplifies

determination of what data is loaded in the system.

fonts and app-defaults Subdirectories (UNIX)

Figure 5-8 shows two additional subdirectories, fonts and app-defaults. These are
applicable to UNIX only. The COE sets environment variables XFONTSDIR and
XAPPLRESDIR to point to these subdirectories. Their purpose is to contain additional
fonts (such as Naval Tactical Data System [NTDS] symbology) or application resource
files that are not provided by the standard X/Motif distribution. It is a violation of the
COE for a segment to overwrite or add files to the standard X/Motif distribution.

During installation, the installation tools look for subdirectories data/fonts and
data/app-defaults underneath the segment’s directory. Files contained within these
subdirectories must use the segment prefix to guarantee unique names. The installation
tools create symbolic links underneath the directory $DATA_DIR/fonts to every file in
the segment’s data/fonts subdirectory and removes the links when the segment is
deinstalled. Similarly, links are created for files underneath the segment’s
data/app-defaults subdirectory.

Creating a data segment requires additional considerations. A segment structure is created
for the data and the installation tools logically insert the data underneath $DATA_DIR for
global and local scope, but underneath the parent segment for segment data. This is best
described through use of an example.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-35

Assume a mine countermeasures decision aid has an assigned directory of MineTDA.
Assume that a separate data segment is to contain parametric data on floating, proximity,
and land mines for the decision aid. Figure 5-9 shows the appropriate directory structure
for the data segment. Further assume that when installed, the decision aid is located
underneath /h/MineTDA. Consider how the installation tools handle the mine data
segment for global, local, and segment scope.

MinesData

SegDescripdata

Floating Proximity Land

h

Figure 5-9: Example Data Segment Structure

Global Scope Example

The Data segment descriptor describes the data scope. For a global data segment, the
installation tools will load the mine data underneath the directory
$DATA_DIR/global/MinesData. If there is insufficient space to load the segment
underneath $DATA_DIR/global, the install tools will report an error and abort. The
mine TDA can thus reference global proximity-mine data as being underneath the
directory $DATA_DIR/global/MinesData/data/Proximity.

Local Scope Example

For a local data segment, the installation tools will load the mine data on the first available
disk partition. The installation tools will then create a symbolic link from
$DATA_DIR/local/MinesData/data to wherever the data segment was actually
loaded. That is, if the data segment is loaded underneath /home2/MineData, then the
symbolic link will point to the directory /home2/MineData/data. The mine TDA
can still reference local proximity mine data as being underneath the directory
$DATA_DIR/local/MinesData/data/Proximity.

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-36

Segment Scope Example

For segment scope data, the installation tools will load the mine data on the first available
disk partition. A symbolic link is then created from the directory
/h/MineTDA/data/MinesData/data to wherever the data segment was actually
loaded. Proximity data can thus be referenced as being underneath the directory
$HOME_DIR/data/MinesData/data/Proximity.

It should now be clear why the COE requires that segments which dynamically create
global or local data do so underneath a directory of the form SegDir/data, where
SegDir is the name of the segment’s assigned directory. This creates a uniform technique
for locating files whether they are created directly by a segment or loaded as part of a data
segment.

In summary, DII compliance mandates that:

· Segments shall create a data subdirectory underneath $DATA_DIR for global and
local data if they own global or local data. The subdirectory created shall be
SegDir/data where SegDir is the name of the segment’s assigned directory.

· The parent COE-component segment shall set the environment variable DATA_DIR to

point to /h/data.

· Segments shall use the environment variable DATA_DIR to reference data underneath

/h/data.

· Segments are responsible for creating the segment’s data subdirectories underneath

/h/data.

· Segments are responsible for handling the case in which a data file is not present or is

corrupted.

· (UNIX) The parent COE-component segment will set environment variables

XFONTSDIR and XAPPLRESDIR to point to $DATA_DIR/fonts and
$DATA_DIR/app-defaults respectively.

· (UNIX) Segments shall place fonts that need to be accessible via XFONTSDIR in the

segment’s SegDir/data/fonts subdirectory. Files in this subdirectory shall be
named using the segment prefix.

· (UNIX) Segments shall place application resource files that need to be accessible via

XAPPLRESDIR in the segment’s data/app-defaults subdirectory. Files in this
subdirectory shall be named using the segment prefix.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-37

5.4.5 Database Segment Types

The database segment type is similar in concept to the data segment type, except that the
data within a database segment type is managed by a DBMS. Data within a data segment
type is typically organized as a “flat file” and is typically managed by the operating
system’s file system.

As explained in Chapter 2, a database segment has scope, which is an indication of how
widely the data is shared, not of where the data is located, as is the case with the data
segment type already described. This scope is indicated in the Database segment
descriptor discussed in subsection 5.5.2.9. Data within a database segment type may be:

Unique This type of database segment indicates that the data is used by only
one application, or is under the configuration control of the segment
sponsor. Unique data represents no sharing between segments.

Shared This type of database segment indicates that the associated data is
used by multiple mission-application segments or is managed across
multiple database segments. Data is shared, but typically only within
one mission domain (e.g., logistics, financial, command and control).

Universal Data in this category represents the most extreme form of
“shareability.” These database segments represent widespread usage
across mission domains, application segments, and require centralized
configuration management.

A database segment contains everything that is to be installed on the database server under
the management of the DBMS and the ownership of the DBA. It contains the scripts to
create a component database and any utilities provided by the developers for the DBA’s
use in installing and filling that particular database. These scripts must include those for
granting and revoking database roles. The only applications permitted in a database
segment are those that support its installation and data fill or that extend DBMS services
for the DBA. Database segments may only be installed on a database server.

When a database segment is installed it must first lay down any scripts, data files, etc. that
will be used to create the database. These scripts are then executed by PostInstall to
create the component database. They must first allocate storage to hold the database and
create one or more database accounts to own that database. They then can create the
database within the storage just allocated and fill it with data. Finally, roles are created to
manage access and the roles are given the appropriate privileges.

Developers cannot provide data files for the DBMS as part of the segment. Database files
must be created using the DBMS vendor’s utilities (e.g. Oracle’s SQL*DBA CREATE
TABLESPACE command) to be correctly incorporated in the DBMS instance.

Figure 5-10 is the same as Figure 5-2 except that it has been shaded to highlight the
directories which are used only for database segments and directories which are not

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-38

required at runtime have been removed. Seg is the segment’s assigned directory. It is
unique and, for a database segment, it must be the same as the name of the database
owner account for the segment’s data objects.

Scripts Subdirectory

The Scripts subdirectory shall contain any segment-specific scripts needed to set the
environment for the database installation. This includes environment variables for all
directory paths that are used by the installation scripts. Note that this directory is used as a
place to store installation-related environmental scripts. As with the development
environment, scripts and environmental settings which are used only for installation must
be kept separate from those used by the runtime environment.

SegDescrip Subdirectory

The SegDescrip subdirectory contains the descriptor files necessary to install the
database segment. Certain information specific to database segments must be incorporated
in the SegInfo file. The Database descriptor is used to identify information such as
object dependencies that are within the database and therefore cannot be evaluated
without the use of the DBMS. See subsection 5.5.2.9 for the associated keywords for this
segment descriptor.

The PreInstall descriptor file should prompt the installer to provide the password for
the DBMS’ database administrator account. The password prompt must be implemented
via the COEPromptPasswd API (see Appendix C) provided by the COE Services. The
DBA password entered is used later by the scripts that perform the installation of the
database segment.

The PostInstall descriptor file is used to set up the installation environment, start the
RDBMS if necessary, and invoke the scripts that perform the installation of the database
segment.

h

Seg

ScriptsSegDescrip bindata install DBS_files

Figure 5-10: Database Segment Structure

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-39

For database segments, the ReleaseNotes descriptor should show how applications,
operating system groups, and database roles are associated. Developers should also
provide the database schema, including its dependencies. In addition to any narrative
information in this file, developers should include comments on their schema, data objects,
and data elements as part of their database build.

The Requires descriptor must identify the required RDBMS and version. It must also
identify all dependencies on other database segments.

As with data segments, database segments have a scope associated with them. The scope
is specified in the Database segment descriptor, as explained in subsection 5.5.2.9.

install Subdirectory

The install subdirectory contains the scripts to install and then create the database
segment. It includes all of the DDL scripts that create the database objects for the
segment. There are two sets of DDL scripts in this directory. The first set allocates storage
for the database, creates the database owner, and defines the roles associated with the
database segment. It must be executed by a DBA. The second set creates all database
objects (tables, views, indexes, sequences, constraints, triggers, etc.) that make up the
database. This set must be executed by the database owner.

The naming conventions to be used for database definition scripts and the structure of
those scripts are discussed in Chapter 4.

data Subdirectory

The data subdirectory contains any data files used to load the database. Data fill may
also be provided in a separate data segment if developers wish or need to keep the fill
separate.

Several methods for loading data, depending on data size, are discussed in
subsection 5.9.3.

bin Subdirectory

The bin subdirectory contains any scripts or other executables used to load data from the
data files into the database. It may also contain any applications that support unique
database administration requirements for that database segment.

DBS_files Subdirectory

The DBS_files subdirectory contains the DBMS-controlled data files that make up the
storage for the database. This directory is owned by the DBMS, not the segment. The data
files are created during the installation of the segment, normally in the PostInstall

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-40

process. Directory ownership must be transferred to the DBMS before the data files are
created. Note that this does not allow developers to stipulate disk architecture.

5.4.6 Patch Segment Types

The COE supports the ability to install field patches on an installed software base. A patch
segment permits the replacement of one or more individual files, including those of the
operating system. It does not refer to overwriting a portion of a file, as is sometimes done
to patch a section of binary code.

Patches are created in a segment whose directory name is the directory name of the
affected segment followed by a “.”, followed by the letter “P”, followed by the patch
number. Figure 5-11 shows an example patch segment directory structure for applying
patch 5 to an ASW segment. The subdirectory SegDescrip is required, but the
remaining subdirectories are patch-dependent. The example illustrates a situation in which
scripts, executables, and data files are to be updated by installation of a single patch
segment.

Scripts bin dataSegDescrip

ASW.P5

h

Figure 5-11: Example Patch Directory Structure

The installation software loads patches underneath the affected segment in a subdirectory
called Patches. Figure 5-12 shows the result of loading patch 5 from Figure 5-11. This
approach makes it easy to find and identify what patches have been applied to a segment.
It also makes it easy for the installation software to automatically remove patches when a
segment is replaced by a later update. If there is insufficient room to physically load the
patch underneath the Patches subdirectory, the patch is loaded on the first available
disk partition. A symbolic link is then created to preserve the logical structure shown. Also
note that when installed, the resulting subdirectory name of the patch for this example is
P5, not ASW.P5.

As patches are installed and removed, the descriptor file Installed in the segment
descriptor directory for the affected segment is updated to reflect what patches are
installed and removed, the date and time, the installer’s name, and the platform from which
the work was done.

When a patch is installed, it is the patch segment’s responsibility to perform whatever
operations are necessary to replace files. In the example shown, the PostInstall script

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-41

must copy files from Scripts, bin, and data as required to update files in the existing
ASW segment.

To facilitate patch removal, the PostInstall program may create compressed copies
of files before they are modified and put them underneath the patch subdirectory (e.g., the
ASW/Patches/P5 subdirectory in this example). In this way, a DEINSTALL descriptor
simply needs to copy the files from the patch subdirectory to their original place and
decompress them to restore the system to the pre-patch state. If the files being replaced
are large, this may require too much disk space to store the original files. In such cases,
the patch segment should be designated as a permanent patch and not make copies. A
patch segment is considered to be permanent if the patch segment does not include a
DEINSTALL descriptor.

Scripts bin dataSegDescrip

ASW

h

P5

Scripts Patches SegDescrip

Figure 5-12: Example Installed Patch

The COE installation software assumes that higher numbered patches must be removed
before a lower numbered patch can be removed. For example, patch 2 cannot be removed
until patch 5 is removed. However, if patch 5 cannot be removed - because there is no
DEINSTALL descriptor for patch 5 - patches 1 and 2 cannot be removed either. The only
way to remove them is to remove the entire segment.

DII compliance requires that:

· Patch segments shall be named SegDir.Pnumber where SegDir is the assigned
directory name for the segment to be patched, and number is a sequential patch
number.

· Patch segments shall perform the necessary operations to replace files through the

PostInstall script.

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-42

· Permanent patch segments shall be designated by the absence of a DEINSTALL script.

Patch segments can also be used to make updates to a database segment prior to the
release of a new database segment that incorporates the patch. The patch segment
structure will be the same as the database segment being patched, and the patch name
follows the same conventions as for any other patch segment.

Any objects, scripts, etc. that are being updated will be in the same location under the
patch segment directory as the corresponding original is under the database segment
directory. PostInstall will be used to backup the original and copy the new file to the
database segment directory. The patch segment will have the same owner as the database
segment being patched.

Any changes to executables provided with the patch will be implemented in the same
manner as patches to other software segments. Any changes to the database provided with
the segment will require an analysis to determine application segment dependencies.
Changes to the database must be coordinated with application segment developers.

If the patch segment is making any changes to the database objects, its developers are
responsible for preserving the information those objects currently contain, together with
restoring any permissions that have been granted on the objects. This usually requires
extracting and saving the records from the objects being modified, making the schema
changes, and then reloading their data. That portion of the patch segment must be
implemented in a manner that allows it to be restarted or re-executed without data loss in
the event of system or media failure during the patch installation.

5.4.7 Aggregate, Parent, and Child Attributes

It is sometimes convenient for a collection of segments to be treated as an indivisible unit.
The aggregate attribute provides this capability and the collection of segments are called
an aggregate segment. One, and only one, segment is designated as the parent segment
and the remaining segments are designated as children. Parent and child segments are
designated as members of an aggregate in the SegName descriptor file. The child segment
must list its parent segment in SegName (but not in Requires), while the parent
segment must list each child (in SegName but not Requires) in the aggregate. See
subsection 5.5 for the segment descriptor information required to do this. Each segment
within the aggregate is packaged according to its segment type as described in preceding
subsections.

The parent segment plays a special role in the aggregate. During installation with the
segment installer, only the parent segment is “seen” by the operator. Child components are
not displayed as selectable items, but are automatically loaded with the parent. Therefore,
the segment name and release notes associated with the parent segment should be carefully
chosen to be properly descriptive of the aggregate.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-43

The parent segment is the first segment loaded from the aggregate. Child segments are
loaded next in the order listed by the parent segment. Because of this, child segments may
specify a dependency on the parent, but shall not specify dependencies upon one another.

In some situations, a child segment in an aggregate should be loaded conditionally. That is,
the child should only be loaded if it is not already on disk, or only if it is a later version. An
example of this situation is if a collection of segments created by a single developer must
use the same executable. One approach would be to create the common executable and
put it into its own separate segment. Then all the remaining segments would need to state
a dependency upon it. An alternative approach, supported here, is to package the common
executable as a child segment that is to be conditionally loaded and placed in an aggregate
with each segment that needs it. The conditional load capability is specified by the
$LOADCOND keyword in the child segment’s SegName descriptor (see
subsection 5.5.1.10).

The COE requires that each segment include a Security segment descriptor. This file is
used primarily as a documentation aid and is used by the installer tool to indicate which
segments are classified at what level. The security level of the parent segment must
dominate that of the child segments. For example, if a child segment has a SECRET
classification, then the parent segment must have a SECRET or higher classification. The
segment developer must ensure that each segment in the aggregate is compatible for the
hardware platform. VerifySeg will check for this condition and reject an aggregate
with incompatible hardware platforms specified.

Disk space required is specified by each individual segment, not by the aggregate parent.
The COE installation tools may load parent and child segments on different disk partitions,
depending upon space available at install time. During installation, the space reported to
the installer takes into account whether or not the aggregate includes a conditional load
child, and whether or not the segment is already on disk. That is, the installer tool reports
the additional space required on the disk to load the selected segment(s).

DII compliance requires:

· One and only segment in the aggregate shall be designated as the parent segment.

· Child segments may specify a dependency on the parent, but shall not specify

dependencies upon one another.

· The security level of the parent segment shall dominate the security level of all child

segments.

· Segments within an aggregate shall be consistent with regard to the hardware platform

specified.

· Segments shall individually specify their own disk space requirements.

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-44

5.4.8 COE-Component Attribute

Segments authorized by the DII COE Chief Engineer may specify the attribute of being a
COE-component segment. COE-component segments are similar to aggregate segments in
that one segment serves the role of a parent segment and all others are children to that
parent. The parent segment is similar to an account group segment which is affected by a
collection of child component segments. However, there are important differences
between COE-component segments and aggregate segments, and between the parent
COE-component segment and account groups.

· At installation time, a segment identified as a COE component must have an
authorization key13 (see the $KEY keyword) specified or else the segment will be
rejected.

· Exactly one segment is designated as the parent COE component for the entire system.

This is the segment whose directory is /h/COE.

· Child COE-component segments are not loaded unless they are required. That is, a

child COE-component segment will not be loaded unless there is another segment
which expresses a dependency upon it.

· COE-component segments are organized into a very specific structure.

· The parent COE-component segment does not set up a runtime environment. It sets

up a baseline environment which is inherited by all account groups.

Figure 5-13 shows the directory structure for COE-component segments. Since COE
components form the foundation for the entire system, they are collected together in a
single place and are validated more rigorously during segment development, integration,
and installation. Special processing, as explained below, is performed on the COE
components because of their unique position within the architecture.

The SegDescrip subdirectory, required for all segments, underneath /h/COE refers to
the collection of COE components as a whole. Segments designated as child COE
components are loaded in the subdirectory /h/COE/Comp. Each child COE-component
segment has its own SegDescrip, bin, Scripts, and data subdirectory as
appropriate. If insufficient space exists to load the COE component directly under
/h/COE/Comp, a symbolic link is created to where the segment was actually loaded.

13 To preserve backwards compatibility, segments which are already authorized as COE-component
segments are not required to use the $KEY keyword for this I&RTS release. However, they are required to
migrate to this approach. In the interim, a legacy segment identified as a COE-component segment which
does not use the $KEY keyword is compared against a table containing the names of authorized COE-
component segments. If it does not match, the segment is rejected. All new COE-component segments
must use the $KEY keyword.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-45

Environment files underneath /h/COE/Scripts are included by every account group
so that they are automatically inherited by every segment. The file .cshrc.COE sets the
path environment variable so that /h/COE/bin is first in the search path before any
other segments. Environment extensions for child COE components are handled
differently than environment extensions for other segments. As child COE-component
segments are installed, environment extension files located underneath the child COE
component’s Scripts subdirectory are textually inserted directly into the appropriate
file underneath /h/COE/Scripts. This insertion is performed automatically by the
installation tools. This is done to avoid the runtime overhead of executing several
source statements to pick up child segment extensions.

Child COE-component segments shall not alter the path environment variable. It is not
necessary to do so because as child COE components are loaded, the installation tools
create a symbolic link underneath /h/COE/bin to where the executables were actually
loaded. This is done so that the search path contains only one entry for the COE,
regardless of the number of actual segments comprising the installed COE. This approach
mandates that all COE-component segments use the segment prefix to name executables.
VerifySeg will issue a warning for COE-component segments that do not meet this
requirement, but in a future release it will strictly fail such a component.

EM UB ...

COE

h

Scripts bin data SegDescrip Comp

EM DCEUB CDE ...

.chsrc.COE

.login.COE

Figure 5-13: COE-Component Segments Directory Structure

Symbolic links are also created underneath /h/COE/data to point to the child COE
component’s data subdirectory. The installation tools automatically delete these
symbolic links when a COE-component segment is deinstalled.

To summarize DII compliance requirements:

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-46

· COE components shall be authorized by the DII COE Chief Engineer. They will be
issued an authorization key that the developer shall specify in the segment with the
$KEY keyword.

· Child COE components shall not alter the path environment variable.

· COE components shall use the segment prefix to name all executables.

· Child COE components shall use the segment prefix to name all public symbols

contained in files within the segment’s Scripts subdirectory.

5.4.9 DCE Attribute

The DII COE supports both DCE server and DCE client applications. Servers are
designated with the DCEServerDef segment descriptor (see subsection 5.5.2.11) while
clients are designated with the DCEClientDef segment descriptor (see subsection
5.5.2.10). Segments, whether a DCE server or a DCE client, must indicate the DCE
attribute or else the VerifySeg tool will generate a fatal error when processing DCE-
related segment descriptors.

5.4.10 Web Attribute

Segment types that have the Web attribute are either Web servers or Web-application
segments (e.g., Web clients). By definition, Web servers are also COE-component
segments, so they have that implied attribute as well. Web applications may or may not be
COE components, and so must indicate explicitly whether or not they are. This is
described in subsection 5.5.1.10.

Web applications can only be installed on a platform that already has a Web server loaded
on it. Therefore Web applications must be designed so that they can access other COE
services that may be located on another platform, possibly even behind a firewall. This
allows sites to isolate the main COE-based system from the Web server by firewalls or
other security-related techniques.

Other than specifying the Web attribute, no additional segment descriptors are presently
required beyond those identified for all other segments.

5.4.11 Generic Attribute

The Generic attribute is provided to allow a segment to indicate that it should be
automatically made a member of all “regular” account groups. This means that the
segment, unless it indicates otherwise, will be made a participant of all account groups
except those which are character-interface-based (e.g., CharIF) or accessed through
remote execution account groups such as RemoteX.

This capability is provided for two reasons. First, some segments should be made a
member of virtually every account group. An example is a Web browser which is set up to

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 5-47

provide access to HTML help pages. Such a segment should be a member of the
following:

· the System Admin account group
· the Security Admin account group
· the Database Admin account group
· the operator account group (e.g., GCCS, ECPN).

It is convenient that this happen automatically without the need for the segment to
explicitly list every account group it is to be a member of. Such segments do not need to
express any affected account group in the SegName descriptor.

Second, some segments developed for one system may be generally applicable to other
mission systems, yet this may not have been realized when the segment was created. Using
the Web browser example, if it is packaged for GCCS and it states GCCS is the affected
account group, the segment’s SegName descriptor will need to be modified to use it for a
different system such as ECPN or GCSS. Declaring the segment to have the generic
attribute avoids this problem.

There are some special points to note about segments which declare the generic attribute:

· The segment is automatically added to every account group except CharIF and
RemoteX.

· Site administrators can establish user profiles to deny an operator access to the generic

segment, even if it is a member of an account group.

· The generic segment is only stored on the disk once, regardless of how many account

groups it is made a member of.

· Generic segments may exclude account groups by listing the groups to exclude with

the $EXCLUDE keyword in the SegName descriptor.

· The generic attribute may be combined with other segment attributes.

Subsection 5.5.1.10 states which attributes may be combined.

5.4.12 Segment Dependencies

Segments specify dependencies upon one another through the Requires descriptor, and,
for database segments with database dependencies, the Database descriptor. However,
the COE does not allow circular dependencies. That is, a situation where Seg A depends
upon Seg B, Seg B depends upon Seg C, and Seg C depends upon Seg A is strictly
forbidden.

Components of an aggregate may have dependencies upon other components within the
same aggregate and such dependencies could lead to the circular situation just described.

Segment Types and Attributes

5- July 1997 DII COE I&RTS: Rev 3.05-48

But since components of an aggregate are always loaded together as a unit, this does not
pose a problem. Child components of an aggregate must not specify dependencies upon
one another in the Requires file, even if they do indeed have such dependencies.
Likewise, the parent segment must not specify a dependency on children within the
aggregate. An aggregate of database segments cannot have circular database dependencies
among the segments or there will be no valid database creation order.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-49

5.5 Segment Descriptors and Descriptor Files

This section details the contents of the segment descriptor files. These files are the key to
providing seamless and coordinated systems integration across all segments. Adherence to
the format described here is required for all segments to ensure DII compliance. This
enables automatic verification and installation of segments.

The software tool VerifySeg must be run during the development phase to ensure that
segments properly use segment descriptor files. The software tool MakeInstall uses
information in segment descriptor files to compress and package segments in a format
suitable for installation from tape, from a disk-based LAN segment server, from a remote
site, or from other media. At installation time, the installation tools use segment descriptor
information to make the COE changes required (e.g., update menu files) so that software
components are available to the user.

Some segment information is contained within individual files while other segment
information is collected into a single file, SegInfo. Segment descriptors which are
contained in their own separate file are discussed in subsection 5.5.1 while segment
descriptors that are contained within the SegInfo file are discussed in subsection 5.5.2.
SegInfo is an American Standard Code for Information Interchange (ASCII) file
(similar to a Windows .INI file) with multiple sections containing segment descriptor
information.

Table 5-4 lists each of the descriptor files and which are required, optional, or not
applicable for each segment type. Table 5-5 lists the same information for segment
descriptor sections within the SegInfo descriptor file. The VerifySeg tool will
display these two tables when the -t flag is given on the command-line so that the latest
information from these two tables is available online.

A SegInfo segment section begins with a single line of the form

[section name]

where section name is chosen from the list in Table 5-5. A section continues until another
section name is encountered, or the end of the file is reached. A section may appear only
once within the SegInfo file, but the order in which sections appear is unimportant.
Section names are not case sensitive.

If a section name that the tools do not recognize is encountered, a check is made to see if
a helper function is available to process the section. If so, the helper function is invoked,
otherwise an error is issued. Appendix C describes which tools accept helper functions.
Creation of a helper functions require authorization by the DII COE Chief Engineer.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-50

Descriptor Acct
File COTS Grp S/W Data DB Patch
DEINSTALL O O O O O O
FileAttribs O O O O O O
Installed I I I I I I
PostInstall O O O O O R
PreInstall O O O O O O
PreMakeInst O O O O O O
ReleaseNotes R R R R R R
SegChecksum I I I I I I
SegInfo R R R R R R
SegName R R R R R R
Validated I I I I I I
VERSION R R R R R R

R - Required O - Optional N - Not Applicable
I - Created by Integrator or Installation Software

Table 5-4: Segment Descriptor Files

Acct
Section COTS Grp S/W Data DB Patch
AcctGroup N R N N N N
*AppPaths N O O N N N
COEServices O O O O O O
Community O O O O O O
Comm.deinstall O O O O O O
Compat O O O O O N
Conflicts O O O O O O
Data N N N R N N
Database N N O N R O
DCEClientDef O N O N N N
+DCEServerDef O N O N N N
Direct O O O O O O
FilesList R O O O O O
Hardware R R R R R R
Help O O O O O O
Icons O R O N N O
Menus O R O N N O
**Network O N O O N O
Permissions N O O N N O
Processes O O O N N O
*Registry O O O O O O
+ReqrdScripts N R O N N N
Requires O O O O O O
Security R R R R R R
SharedFile O O O N N O

R - Required O - Optional N - Not Applicable
* - NT platforms only + - UNIX platforms only
** - COE Component Segments Only

Table 5-5: SegInfo Segment Descriptor Sections

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-51

Certain general characteristics are common to all files or sections listed in these two
tables:

1. All descriptor files are ASCII data files, except for those which are executables (e.g.,
PostInstall, PreInstall, PreMakeInst, and DEINSTALL) which may be
script files or compiled code. Regardless of platform, the descriptor files may have an
optional file extension. The .TXT file extension is permitted for each descriptor file
except DEINSTALL, PostInstall, PreInstall, and PreMakeInst. These
are actually executables and may have a .BAT extension (for batch files), a .EXE
extension (for compiled code), or no extension at all. The file extensions are optional,
but developers should conform to standards on the platform for which the segment is
targeted.

2. In describing syntax, options which may appear exactly once are delimited by brackets

(i.e., “[]”), while options that may appear multiple times are delimited by braces (i.e.,
“{ }”). The “|” (boolean exclusive or) symbol is used to indicate a selection of one
item from a list of choices. The delimiters are not entered into the actual descriptor
file.

3. Descriptor files may contain comments. Comments are delimited by using either the

standard C convention14 (e.g., delimited by /* */), or on a line by line basis using the #
character. C style comments may not be nested. C style comments may not be used in
PostInstall, PreInstall, PreMakeInst, or DEINSTALL since these are
executable scripts. (These may also be compiled programs instead of scripts, although
scripts are recommended because they can be examined at integration time for
potential problems.)

4. Blank lines may be used freely and are ignored unless they are within a block of text

for insertion, replacement, etc. Blank lines are ignored when searching for a block to
delete or replace. Similarly, blanks, tabs, and other whitespace are ignored unless they
are part of a block to insert or replace.

5. When a block of text is required, such as in adding a block of text to a community file,

the characters “{“ and ‘“}” are used as block delimiters.

6. Keywords inside a descriptor file are always prefixed with the “$” character.

7. C style #ifdef, #else, #elif, #endif, and #ifndef constructs may be used

in descriptor files, along with the standard C boolean operators. These constructs may
not span segment descriptor sections. The constants which may be used in these
constructs are defined in subsection 5.3.

14 This should not be misunderstood as stating a preference for C/C++ over Ada or any other language.
The comments referred to are placed in data files, not executable code. C style comments were selected
because they allow a block of text to be commented out by surrounding the block with a single “/* */” pair
instead of including a comment token on each line.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-52

8. During installation, the COE installation software sets up to five environment

variables: INSTALL_DIR is the absolute pathname to where the segment will be
loaded (PreInstall) or was loaded (PostInstall). MACHINE_CPU and
MACHINE_OS are set to describe the type of platform on which the software has been
loaded. Valid values for these environment variables are listed in subsection 5.3.
SYSTEM_ROOT (for NT only) is set to point to the directory where Windows is
installed. COE_TMPSPACE is the location of temporary space allocated for the
duration of segment installation.

9. Parameters which follow a keyword are given on the same line as the keyword and are

separated by colons. The exception to this rule is when the keyword signals the
beginning of a variable length list. For example,

 $PATH:/etc

 specifies a pathname while

 $LIST
 f1
 f2
 f3

 specifies a list of files.

10. Some segment descriptors, such as the Requires descriptor, specify the name of

another segment that the COE installation tools must search for at install time. To
speed up the search process, segment names are expressed in the form

 segment name:prefix:home dir:[version:{patches}]

 where segment name is the name of the segment, prefix is the segment’s prefix, home

dir is the segment’s expected home directory, while version and patches are optional.
home dir is searched first, and if the segment name found there is the same as that
specified, a match is declared successful. If home dir does not exist, is not a segment,
or the segment name does not match, an exhaustive search is performed on all
segments on all mounted disk partitions.

11. (NT) When a disk drive needs to be specified in a filename, the filename must be

enclosed in double quotes. This is required so that the tools can distinguish between
use of ‘:’ as a field delimiter for descriptors, or as a separator between a disk drive
name and a pathname.

12. Some segment descriptors allow a version number or patch level to be specified. See

the previous Requires example. If no version number is specified, any version found
is successful. If a version number is specified, an ordinary lexical comparison of
primary version numbers is made with zeroes inserted for any missing digits. For

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-53

example, a version number such as 3.4/SunOS-4.1.3 is truncated to just the primary
version number which is then expanded to be 3.4.0.0 for comparison purposes.

13. Some descriptor file features require prior Chief Engineer approval, or are restricted to

COE-component segments. These are described in the sections which follow and
generally require the $KEY keyword to be specified in the applicable section. This
keyword requires an authorization key provided by the Chief Engineer. The
authorization key is based on several segment attributes including segment name,
segment prefix, and the section name to which it applies. The format of the $KEY
keyword is

 $KEY:permit requested:authorization key

 where permit requested is the keyword or section name the key applies to, and
authorization key is the key given to the developer by the Chief Engineer. A separate
authorization key is required for each permit requested.

14. Certain keywords or section names may be applicable to one platform but not another.

These are noted in the discussion below. If the tools encounter a keyword that is not
appropriate for a platform, a warning will be generated and the keyword or section
will be ignored.

15. A segment is considered to be a permanent segment if the DEINSTALL descriptor is

not provided. This means that the installation tools will prevent a permanent segment
from being deleted, but it may be upgraded by loading a newer version of the segment.

DII compliance requires the following:

· Segments shall include all required files shown in Table 5-4. (VerifySeg will fail a
segment that does not include a required descriptor file or descriptor section.)

· Segments shall fully specify all dependencies and conflicts through the Requires and

Conflicts descriptors. (Circular dependencies are not allowed.)

· Segments shall fully specify disk and memory requirements (memory may be omitted

for data segments) in the Hardware file.

· Segments shall not use PostInstall, PreInstall, PreMakeInst, or

DEINSTALL to make modifications that the COE installation software will make. Of
particular importance is that segments shall not delete the segment directory during a
DEINSTALL script.

· Segments shall use the ReleaseNotes file to convey information meaningful to an

operator, not the system integrator. ReleaseNotes files shall not include company
names, names of individuals, nor software trouble report numbers.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-54

· Segments shall specify a version number and date in the VERSION descriptor file and
shall increment the version number for each subsequent release. Version numbers shall
fully comply with the requirements stipulated in Chapter 3 of this document.

5.5.1 Segment Descriptor Files

This subsection describes all the segment descriptors that are contained in individual files.

5.5.1.1 DEINSTALL

The DEINSTALL descriptor file is an executable, either a script or a compiled program,
that is invoked by the installation software when the operator has elected to remove a
segment. This may occur by explicitly selecting a segment to remove or by electing to
install a new version of the segment. DEINSTALL should perform actions such as
shutting down segment-owned background processes prior to segment removal.
Operations performed in preparation for a segment update should normally be done in
PreInstall, while DEINSTALL is used when the segment is to be “permanently”
removed from the system.

If this file does not exist, the segment is assumed to be permanent and cannot be removed
except when installing a new version. If a new version is installed and this file does not
exist, the installation software will use the information in the descriptor directory to undo
changes made by the previous installation of the segment and then simply delete the
directory.

For security reasons, the DEINSTALL script is not run with root-level privileges, unless
the $ROOT keyword is given in the Direct descriptor. Note that the $KEY keyword
must also be specified in the Direct descriptor to acquire root-level privileges.

5.5.1.2 FileAttribs

The FileAttribs descriptor file allows a segment to specify the attributes (owner,
read/write permissions, group) for each file in the segment. It is created by the tool
MakeAttribs (see Appendix C). The installation tools, just prior to PostInstall,
will use information in this file to set file attributes.

FileAttribs has certain restrictions due to security and segment integrity
considerations. The following will be ignored:

· Files within the SegDescrip subdirectory
· Files outside the segment
· Requests to set root ownership
· Requests to set UNIX “sticky bits” (e.g., chmod 4644)

If FileAttribs is not provided by the segment, the installation tools will automatically
do the following for all except COTS segment types:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-55

· chmod 554 for all files in the bin subdirectory
· chmod 664 for all files in the data subdirectory
· for account groups, set owner to the same group id as specified in the AcctGrps

descriptor for all subdirectories except SegDescrip
· for other segment types, set owner to the same group id as the affected segment for all

subdirectories except SegDescrip.

5.5.1.3 Installed

The installation software creates the file Installed as segments are loaded. The file
specifies the segment that was loaded, the date and time of the installation, which platform
was used to do the installation, and the version number of the software used to do the
installation. This file is located underneath the segment descriptor directory.

5.5.1.4 PostInstall

Most of the work required to install segments is performed by the COE installation
software through information contained in the descriptor directory. However, additional
segment-dependent steps must sometimes be performed. PostInstall is an
executable, either a script or a compiled program, that segment developers may provide to
handle segment-specific installation functions after the segment has been copied to disk
and installed by the COE. During installation, PostInstall may invoke functions (e.g.,
prompt the user) described in Appendix C.

The PostInstall descriptor must not do any operations that are performed by the
COE installation software. For security reasons, the PostInstall script is not run with
root-level privileges unless the $ROOT keyword is given in the Direct descriptor. Note
that the $KEY keyword must also be specified in the Direct descriptor before root-level
privileges will be granted.

5.5.1.5 PreInstall

The PreInstall descriptor file is identical to PostInstall except that it is invoked
by the installation software before the segment is loaded onto the disk. It must not do any
operations that are performed by the COE installation software. For security reasons, the
PreInstall script is not run with root-level privileges, unless the $ROOT keyword is
given in the Direct descriptor. Note that the $KEY keyword must also be specified in
the Direct descriptor before root-level privileges will be granted.

5.5.1.6 PreMakeInst

PreMakeInst is an optional executable program or script that is invoked by the
MakeInstall tool. Its purpose is to allow a segment to perform “cleanup” operations,
before MakeInstall writes the segment to the distribution media. Example cleanup
operations include:

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-56

· deleting temporary files
· ensuring no “core” or other “garbage” files are in the segment
· ensuring no compiler “scratch” files, such as temporary intermediate object files, are in

the segment.

MakeInstall sets the environment variables INSTALL_DIR, MACHINE_CPU, and
MACHINE_OS prior to invoking PreMakeInst.

5.5.1.7 ReleaseNotes

Use the ASCII file ReleaseNotes to provide information useful to an operator in
understanding the new functionality being provided by the segment or the problems being
fixed, and a system administrator responsible for installing segments. It is not a help file,
nor is it information targeted to the system integrator. Therefore, it must not refer to
problem report numbers, version15 numbers, release dates, individuals or companies, point
of contact, or similar information. (This type of information is contained elsewhere, such
as in the VERSION file, and duplication of information may lead to conflicting or
confusing information for the operator.) The ReleaseNotes file must not contain any
tabs or embedded control characters.

An example of a “poor” ReleaseNotes file is

Release: 5.6.3
Point of Contact: John Doe, Tritron Company
Phone: (619) 555-1234

1. Implemented NCR #302
2. Added check for memory overflow
3. Fixed problem with double scrolling in STR #307

An example of a “good” ReleaseNotes file is

This release fixes two known problems:

(a) Calculation of range and bearing for polar latitudes
has been corrected

(b) Display of garbled latitude/longitude in the Track Summary
display for ownship has been corrected

The following new features are added with this release

1. Search and Rescue TDA added.
2. Option added to restrict operator deletion of comms msgs.

15 The COEInstaller contains a “print” button which allows the release notes to be printed out. It
automatically appends the segment name, and version and date (from the VERSION descriptor) to the
output. This tool also has a button which allows a user to view the release notes on the screen, including
release notes for child segments in an aggregate.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-57

The ReleaseNotes is also a good place to convey information to the sites about any
COTS features that are disabled or that may have restrictions on releasability to foreign
nationals.

5.5.1.8 SegChecksum

The file SegChecksum is an optional file created by integration software. It contains
information necessary for the System Administrator software to perform an integrity check
on the installed software. If the file does not exist, the integrity check cannot be performed
on the segment.

5.5.1.9 SegInfo

SegInfo is an ASCII descriptor file which contains segment information in one or more
segment descriptor sections. Table 5-5 lists the possible sections.

5.5.1.10 SegName

The SegName descriptor file provides the following information:

· segment type ($TYPE keyword)
· segment name ($NAME keyword)
· segment prefix ($PREFIX keyword)
· segment attributes ($TYPE keyword)
· optional aliases for this segment ($EQUIV keyword)
· conditional loading requirements ($LOADCOND)
· company and product name (For UNIX, this is for documentation only. For NT, these

are added to the registry.)
· if applicable, affected account group, or affected segment for patches ($SEGMENT

keyword)
· if applicable, name of parent or child segments ($PARENT, $CHILD keywords)

The keywords $TYPE, $NAME, and $PREFIX are required for each SegName
descriptor file. Additional keywords required depend upon segment type. COE-component
segments may not contain $SEGMENT, $PARENT, or $CHILD keywords. All other
segments must have one $PARENT line, one or more $CHILD lines, or one or more
$SEGMENT lines.

$COMPANY_NAME:string1
$PRODUCT_NAME:string2

These two keywords are intended for use with COTS products on NT platforms. If either
keyword is used, both are required. They cause the installer to insert the company name
(string1) and product name (string2) in the registry entry

SOFTWARE\company name\product name

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-58

Note: These keywords may be present for a UNIX platform, but are
presently ignored. They are intended for future use in UNIX.

$EQUIV:name:prefix

This keyword, which may appear multiple times, allows a segment to define aliases. It is
intended to help legacy segments migrate from an earlier COE (e.g., JMCIS or GCCS
COE) to the DII COE. It is primarily intended for account group segments, but may be
used for other segments as well. name is the desired alias and prefix is the alias segment
prefix.

This keyword allows a segment from a legacy system to be loaded under an equivalent
account group without the need to modify the legacy segment’s dependency statements.
For example, assume that SegA was originally developed for JMCIS and that it states in
its segment descriptors a dependency on an account group whose name is JMCIS.
Assume that the legacy segment prefix was JMC. Assume that SegB was developed for
the GCCS account group. Finally, assume that SegA and SegB are to be loaded on a new
system under an account group whose name is New Acct Group and whose segment
prefix is NAG. Then the keyword entries

$NAME:New Acct Group
$PREFIX:NAG
$EQUIV:JMCIS:JMC
$EQUIV:GCCS:GCCS

allow SegA and SegB to be loaded properly even though they state a dependency on
segments, JMCIS and GCCS, that do not exist in the new system.

$EXCLUDE:name:prefix:home dir

This keyword is used to indicate an account group that a generic segment is to be
excluded from. name is the name of the account group, prefix is the account group’s
segment prefix, and home dir is the assumed location of the account group’s assigned
directory. This keyword can only be used with segments that specify the GENERIC
attribute. The CharIF and RemoteX account groups are automatically excluded.

$KEY:COE:key

This keyword is required for all segments that have the attribute COE CHILD, COE
PARENT, or WEB SERVER. key is the authorization key obtained from the DII COE
Chief Engineer. For backwards compatibility, existing COE-component segments are
“grandfathered” and may omit this keyword for now. However, existing segments should
be modified to use this keyword to ensure future compatibility.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-59

$LOADCOND

This keyword, which accepts no parameters, is used to indicate that a child segment in an
aggregate is to be conditionally loaded. The child segment is loaded only if the segment
does not already exist on the disk or if the child segment is a later version than one already
on the disk. If this keyword is used, the segment must also have the CHILD or COE
CHILD attribute or else an error is given. This capability is not required for any other type
of segment because the installer tool already checks to be sure an earlier version is not
unintentionally being loaded over a later version.

$TYPE:segment type[:attribute1:attribute2:...]

where valid segment types are

COTS
ACCOUNT GROUP
SOFTWARE
DATA
DATABASE
PATCH

and valid segment attributes are

AGGREGATE
CHILD
COE CHILD
COE PARENT
DCE
WEB SERVER
WEB APP
GENERIC

AGGREGATE is used to indicate that the segment being defined is the aggregate parent
segment. It is valid only for account group, data, and software segment types. Aggregates
must list one or more child segments with the $CHILD keyword. The COE does not
allow an aggregate of aggregates. That is, it is not valid for Aggregate A to have a child B
which is also an aggregate.

CHILD is used to indicate that the segment being defined is an aggregate subordinate
segment. The parent segment must be listed using the $PARENT keyword.

COE PARENT is used to indicate that the segment being defined is the primary COE
segment. Its home directory will be /h/COE.

COE CHILD is used to indicate that the segment being defined is a COE-component
segment other than the parent. The installation tools will verify that the segment is an
authorized COE component and if not will reject the segment. This is done through the
$KEY keyword.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-60

DCE is used to indicate that this segment is a DCE server or a DCE client application. This
attribute must be specified to use any DCE-related segment descriptors.

WEB SERVER is used to indicate that this segment is a Web server and a COE-
component segment.

WEB APP is used to indicate that this segment is a Web-based application segment.

GENERIC is used to indicate that this is a generic segment that should be added to the
account groups as described in subsection 5.4.11.

Segment types are mutually exclusive; only one segment type may be given. Segment
attributes are also mutually exclusive, except for DCE, Web and GENERIC attributes as
follows:

· DCE may be combined with AGGREGATE, CHILD, or COE CHILD.
· WEB SERVER may be combined with AGGREGATE, CHILD, or COE CHILD.
· WEB APP may be combined with AGGREGATE, CHILD, or COE CHILD.
· GENERIC may be combined with all other attributes except WEB SERVER and COE

PARENT.

For example, a generic Web mission application that is a child component of an aggregate
would be expressed as

$TYPE:SOFTWARE:CHILD:WEB APP:GENERIC

The order in which attributes are listed is unimportant.

Note: There are two important considerations with respect to aggregate
segments. First, when a change is made to any segment within an
aggregate, the version number of the parent must be updated to
reflect that a change has occurred. If a child segment was
modified, then the version number of the child must be updated as
well. This is in keeping with good configuration management
practices. Secondly, the parent segment in the aggregate must
specify the version number for each child in the aggregate. See
the $CHILD keyword. This is required to ensure that the child
components are the exact version that the parent is expecting.

$NAME:name

where name is a string of up to 32 alphanumeric characters. Embedded spaces may be
used for readability, but the string must not contain tabs or other control characters.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-61

$PREFIX:prefix

This keyword establishes the segment’s assigned prefix, prefix.

$SEGMENT, $CHILD, $PARENT

The syntax for $SEGMENT and $PARENT is the same:

keyword:name:prefix:home dir

The syntax for $CHILD is

$CHILD:name:prefix:home dir:version

where version must16 include all 4 digits of the version number and must match the version
number in the VERSION descriptor for the child segment that is referenced.

This descriptor file may contain one and only one $PARENT keyword. Multiple affected
segments or child segments may be listed by listing each segment on a separate line.

Note: Do not confuse the attribute CHILD with the $CHILD keyword.
The $CHILD keyword is used to indicate a list of subordinate
segments in the parent of an aggregate segment. The CHILD
attribute is used to indicate that a segment is the subordinate
segment in an aggregate whose parent is identified with the
$PARENT keyword.

5.5.1.11 Validated

The COE requires strict adherence to integration and test procedures to ensure that a
fielded system will operate correctly. To facilitate integration and testing, the
VerifySeg tool creates the file Validated to confirm that a segment has been tested
for DII compliance. Subsequent tools in the development, integration, and installation
process use this file to determine whether a segment has been altered, thus indicating that
the segment needs to be revalidated.

The following information is captured:

· the version of VerifySeg used to validate the segment
· the date and time validation was performed

16 This represents a change from the previous I&RTS. It has been added to correct configuration
management problems related to mismatched parent/child segments within an aggregate. To preserve
backwards compatibility, VerifySeg will presently generate a warning message if the version number is
not specified. However, in a future release it will generate a fatal error so developers should begin to use
the new format given here. If the version number is specified, VerifySeg will generate a fatal error if
the version number is less than 4 digits or does not match the child’s version number.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-62

· who performed the validation
· a count of all errors and warnings produced by VerifySeg for the segment
· a checksum computed to enable detection of modifications made after the segment

was validated.

5.5.1.12 VERSION

The format of the VERSION descriptor is

version #:date[:time]

where version # is the version number for the segment, date is the version date (in
mm/dd/yyyy format), and time is an optional time stamp (in the format hh:mm). Version
numbers must adhere to the rules defined in Chapter 3.

Note: This release of the I&RTS extends the year from 2 digits to 4
digits to avoid complications when the year 2000 arrives.
VerifySeg will issue a warning for any segment that uses less
than 4 digits, but since this date is used for documentation
purposes only, there is no operational impact if only 2 digits are
used.

5.5.2 SegInfo Descriptor Sections

This subsection describes all the segment descriptors that are sections within the
SegInfo file.

5.5.2.1 AcctGroup

Syntax for the AcctGroup descriptor is

group name:group ID:shell:profile flag:home dir:default profile name

where

group name is an alphanumeric string used to identify this account group. The account
group name must be unique (i.e., no other account group may have the same name).

group id is a UNIX group id to be inserted into the password file for accounts created
from this group. The user id is calculated automatically by examining the password file
for user accounts within the same group and then adding 1 to the highest user id.
Group ids less than 100 should be avoided.

shell is the UNIX shell to execute when logging in (e.g., /bin/csh, /bin/sh).
This parameter should be left blank for NT platforms.

profile flag is 0 if no profiles are allowed, otherwise 1.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-63

home dir is the home directory for the given account group (e.g.,
/h/AcctGrps/SecAdm).

default profile name is an alphanumeric string identifying the account group’s default
profile. This name is ignored unless the profile flag is nonzero.

In effect, AcctGroup is a template of what to enter into the /etc/passwd file for
accounts within this group.

Group names and profile names are not case sensitive. The maximum number of
characters in a group name, including embedded blanks, is 15. The maximum number of
characters in a profile name17 is 64. The maximum number of characters in the home
directory pathname is 256.

If the account group is to have a default profile, the installation software will automatically
create the profile with the name specified. The profile will be set up to have a classification
level of TOP SECRET (unless the segment specifies otherwise), all possible object
permissions enabled (see the Permissions descriptor), and all possible menu and icon
entries enabled. Note that site administrators will not normally assign the default profile to
any user because it would provide greater access than is warranted either from a “need to
know” perspective, or from a perspective of overwhelming the operator with too many
features. The default profile is provided only as a convenient template for creating user
profiles.

The profile classification can be explicitly stated by including a line of the form

$CLASSIF:classification

within the segment descriptor section. Valid classification values are

UNCLASS
CONFIDENTIAL
SECRET
TOP SECRET

5.5.2.2 AppPaths (NT Only)

The AppPaths segment descriptor is used to add a list of executables and DLLs to the
NT search path. The executables are listed immediately after the segment descriptor as in

17 The maximum in the previous I&RTS was limited to 15 characters. This has been extended to support
those services which describe profiles based on a combination of duty position and organization, or similar
approach.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-64

[AppPaths]
app1.exe
app2.exe
app3.DLL

The executables and DLLs must be in the segment’s bin subdirectory.

The installation tools remove the named executables and DLLs from the NT search path
when the segment is deleted. Refer to subsection 5.5.2.25 for more information on shared
files.

Note: As with UNIX, it is a violation of the COE to use this technique
to insert the current working directory into the NT search path.

5.5.2.3 COEServices

Segments frequently require changes to services provided by the operating system. Make
such requests through the COEServices descriptor to ensure proper coordination with
other segments. One or more entries may follow each keyword.

$GROUPS (UNIX only)

Segments may add entries to the /etc/group file as follows:

$GROUPS
name:group id

where name and group id have the meaning defined by the UNIX group file. If the
specified name already exists in the group file but with a different group id, an error will
be generated.

$PASSWORDS (UNIX only)

Segments may occasionally need to add entries into the UNIX password file to establish
file ownership. The syntax is:

login name:user id:group id:comment:home dir:shell

where these entries correspond to the entries in the UNIX passwd file. Multiple lines
may be included to add multiple password entries.

The installation software inserts an “*” for the password field to ensure that these are
system accounts, not actual user login accounts. Segments that need to add a user account
must be approved in advance by the Chief Engineer, and then will generally be approved
only for COE-component segments.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-65

The installation software processes the $PASSWORDS keyword before the segment is
actually loaded onto disk so that PostInstall scripts which need to set file ownership
will work properly.

$SERVICES

Ports are added to the /etc/services (or NT equivalent) system file through the
$SERVICES keyword. The syntax is:

$SERVICES[:comment]
name:port:protocol{:alias}

where

name is the name of the socket to add,

port is the port number requested, and

protocol is either tcp or udp.

The optional comment, if provided, will be inserted into the /etc/services file by the
installation software.

If the port number requested is already in use under another name, an error will be
generated. Note that port numbers in the range 2000-2999 are reserved for COE
component segments and may not be used by mission application segments.

This keyword should not be necessary for most DCE applications because endpoints are
defined dynamically.

5.5.2.4 Community

Many of the descriptor files direct the installation software to insert, delete, replace or
otherwise alter blocks of text in ASCII files. The Community descriptor is provided to
issue similar commands to the installation software for which no corresponding descriptor
exists. It is intended to be a “catch all” and should be used carefully, and only when there
is no other way to accomplish the modifications required. VerifySeg will fail any
segment which attempts to use a Community descriptor to modify a file that is already
handled by another descriptor. For example, inserting a port entry into /etc/services
is handled by the COEServices descriptor so VerifySeg will fail a segment that
attempts to do this through a Community descriptor.

Segment developers shall use the Comm.deinstall descriptor to undo changes made
by the Community file. Comm.deinstall is invoked when a segment is removed and
is the inverse of the Community file. The Comm.deinstall is neither required nor
useful if the segment is a permanent segment.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-66

The commands listed below are available for both the Community and
Comm.deinstall files. Blocks of text are delimited by braces, where the opening and
closing brace are on a line by themselves. When commands require that a textual search be
done, embedded spaces and control characters are ignored during the search.

To illustrate how the commands work, assume the file IDE.TEST contains the following
text:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
setenv testvar $HOME

set filec

setenv testvar2 $HOME/data

end of example file

$APPEND

Append the block of text which follows to the end of the file.

Example:

$APPEND
{
This is an example to append at the end of a file
source my_script
#
}

$COMMENT:char

Using the character specified, find the block of text which follows and comment it out.
This effectively deletes text, but has the advantage that it can easily be uncommented.

The command sequence

$COMMENT:#
{
set a test var
setenv testvar $HOME
set filec
}

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-67

will replace the text to modify the file as follows:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
#setenv testvar $HOME
#
#set filec

setenv testvar2 $HOME/data

end of example file

Notice that the blank line between setenv and set is ignored in searching for the lines
to delete, but is preserved in the commented out version of the file.

Note: Be careful to note that the ‘#’ character is not a valid comment
delimiter for all community files! (e.g., X and Motif resource files
use ‘!’ as a comment delimiter.)

$DELETE [ALL]

Find the block of text which follows and delete it from the file. If ALL is specified, delete
every occurrence in the file.

The command sequence

$DELETE
{
set a test var
setenv testvar $HOME
set filec
}

will delete the block of text to modify the file as follows:

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-68

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

setenv testvar2 $HOME/data

end of example file

Notice that the blank line between setenv and set is ignored in searching for the lines
to delete, but is deleted in the resulting version of the file.

$FILE:filename

Name the file to which the commands that follow apply.

Example:

$FILE:/h/IDE/Scripts/IDE.JMCIS

$INSERT [ALL]

Find the first occurrence of the first block of text, then insert the second block of text
immediately after it. If ALL is specified, insert the second block of text after every
occurrence.

Example:

$INSERT
{
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src
}

The resulting changes to the example file are:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-69

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src

set a test var
setenv testvar $HOME

set filec

setenv testvar2 $HOME/data

end of example file

$REPLACE [ALL]

Replace the first occurrence of the first block of text, if found, with the second. If ALL is
specified, replace every occurrence.

Example:

$REPLACE
{
setenv OPT_HOME /h/OPT
}
{
setenv OPT_HOME /home2/OPT
}

Embedded spaces and control characters are ignored in the search, but are preserved in the
replacement. Case is preserved in the search and in the replacement.

$SUBSTR:DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

When performing a textual search, search for a matching substring instead. Insertions,
deletions, or replacements are made as indicated.

$UNCOMMENT:char

Find the block of text which follows and uncomment it. The comment character is char,
but the block of text which follows the $UNCOMMENT command does not contain the
comment character.

Example (undo the effects of the $COMMENT example above):

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-70

$UNCOMMENT:#
{
set a test var
setenv testvar $HOME
set filec
}

Blank lines will also be uncommented if there are any between

set a test var

and

set filec

Consider a more complete example. The following will insert two new environment
variables at the end of the file, replace OPT_HOME with OPTION_HOME, replace
OPT_DATA with OPTION_DATA, and replace all occurrences of the substring “stvar”
with “st_var”. This example also shows the use of comments.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-71

/* This is a multi-line comment
 just like in standard C.
*/
This is a single line comment

Assume file is in IDE Scripts subdirectory
$FILE:/h/IDE/Scripts/IDE.TEST

$REPLACE
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}

$SUBSTR:REPLACE ALL
{
stvar
}
{
st_var
}

$APPEND
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

The resulting file IDE.TEST is

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-72

Sample file

Define runtime vars
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data

set a test var
setenv test_var $HOME

set filec

setenv test_var2 $HOME/data

end of example file
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------

This example shows the use of comments to enclose modifications between a
BEGIN/END pair. This technique is recommended when making modifications to
community files to make it easier to determine changes made as segments are installed.

Note: This technique is used by the installation software as environment
extension files are modified. Therefore, developers must not put
such comments in environment extension files.

5.5.2.5 Comm.deinstall

Comm.deinstall is the inverse of Community. Its purpose is to undo modifications
made to community files when a segment is removed from the system.

The corresponding Comm.deinstall file to undo the changes made in the example
from the Community subsection is:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-73

$FILE:/h/IDE/Scripts/IDE.TEST
$REPLACE
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}

$SUBSTR:REPLACE ALL
{
st_var
}
{
stvar
}

$DELETE
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

5.5.2.6 Compat

Subsequent releases of a segment are not always backwards compatible. The Compat
descriptor is used to indicate the degree to which backward compatibility is preserved with
the newly released segment. This is achieved by listing version numbers for previous
releases which the current release supports. In the sense used here, backwards
compatibility means that the segment being released will work with other segments that
have been compiled and linked with an earlier release version.

The format of the Compat descriptor is a single line containing one of three possible
entries:

+ALL This indicates that the current release is backwards compatible with
all previous releases.

-NONE This indicates that the current release is not backwards compatible
with any previous release.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-74

version list This indicates that the current release is backwards compatible to a
list of versions. Version lists are denoted by the $LIST,
$EARLIEST, and $EXCEPTIONS keywords.

For example, suppose the new MySeg release is version 3.2.5.4 and that it is compatible
with all versions from 2.9.1 up to the present with the exception of versions 3.0.1.2 and
the 3.1 version series. Then the Compat file would contain the following entries:

First number listed is earliest compatible version
$EARLIEST
2.9.1
Remaining version numbers are exceptions
$EXCEPTIONS
3.0.1.2
3.1

When a digit is omitted from the version number, or an asterisk is in place of the digit,
there is an assumed wildcard in that digit position. That is, any digits would be acceptable
in that position.

The $LIST keyword is used to indicate an explicit list of compatible versions. $LIST is
mutually exclusive with the $EARLIEST/$EXCEPTIONS keyword pair. When specifying
a list, a range can be indicated by the optional keyword $TO. Thus, the previous example
could also have been done as

$LIST
2.9.1 $TO 3.0.1.1
3.0.1.3 $TO 3.0.9
3.2.0 $TO 3.2.5

In some cases, one or more patches must be applied to preserve compatibility. The patches
are listed by number immediately after the version number by using a colon between patch
numbers. This may be done only with the $LIST keyword. For example,

$LIST
2.9.1:P4:P5
3.0.1.1
3.0.2:P8 $TO 3.0.4:P7

This means that the current version is backwards compatible with

· 2.9.1, but only if patches P4 and P5 have been applied
· 3.0.1.1 with no restrictions regarding patches
· 3.0.2 through 3.0.4 with the restriction that patch P8 must be applied to version 3.0.2

and patch P7 must be applied to version 3.0.4.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-75

If no Compat file exists, the present version is assumed to not be backwards compatible
with any previous releases. That is, -NONE is assumed.

5.5.2.7 Conflicts

Two segments may conflict with one another so that one or the other, but not both, can be
installed. The Conflicts descriptor is used to specify such inter-segment conflicts. The
format is a list of conflicting segments in the form:

segment name:prefix:home dir[:version{:patch}]

where segment name is the name of the conflicting segment as given in the segment’s
SegName descriptor file, prefix is the conflicting segment’s segment prefix, and home dir
is the conflicting segment’s home directory.

The Conflicts descriptor is essentially the inverse of the Requires descriptor.

5.5.2.8 Data

The Data descriptor is used to describe where data files are to be logically loaded and
their scope (global, local, or segment). Only one of the three scopes may be specified in
the descriptor; that is, a data segment has one and only one scope.

The syntax is

$SEGMENT:segname:prefix:home dir

for segment data, or

$LOCAL:segname:prefix:home dir

for local data, or

$GLOBAL:segname:prefix:home dir

for global data, where segname, prefix, and home dir refer to the affected segment. The
segname and prefix must match the name given in the affected segment’s SegName
descriptor. Figure 5-9 shows that the data to install is underneath the segment’s data
subdirectory.

5.5.2.9 Database

The Database segment descriptor is used to identify information such as object
dependencies that are within the database and therefore cannot be resolved without the
use of the DBMS. There are five keywords used under this descriptor to track object-level
information: $REFERENCES, $MODIFIES, $ROLES, $SCOPE, and $ACCESSES. The

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-76

first four are used by database segments, the last is used by database application segments.
Their usage is discussed below.

$SCOPE:scope

This keyword specifies the scope of the database objects. Legal values for scope are
UNIQUE, SHARED, and UNIVERSAL. Scope is required for database segments, but it is
not presently used. It is reserved for future use and required now so that segments will not
require modifications later.

$REFERENCES

The $REFERENCES keyword is followed by a list of the individual database objects that
the database segment depends upon which are external to the segment. The Requires
segment descriptor must be used to state a dependency upon the segments whose objects
are listed under $REFERENCES. Version compatibility will be checked using the
Requires descriptor so it is not repeated here. The format for the object list is

$REFERENCES
object name:schema

For example, assume that the GSORTS database segment references the
COUNTRY_CODE table in the S&M segment and the PORTS table in the NID segment.
The schema owners for S&M and NID respectively are TABLE_MASTER and NID. The
appropriate descriptor is

$REFERENCES
COUNTRY_CODE:TABLE_MASTER
PORTS:NID

$MODIFIES

The $MODIFIES keyword is followed by a list of the external database objects that the
database segment modifies by adding triggers, or by including them in procedures or
functions. All segments whose objects are listed here must also appear under the
Requires descriptor. The format for the object list is

$MODIFIES
object name:schema:modification type:modification name

The object name and schema follow the same rules as the $REFERENCES keyword.
Modification type is used to stipulate what has been done. Its legal values are TRIGGER
for database triggers or PROCEDURE for database functions, procedures, or packages.
Modification name is the name of the trigger or procedure that is attached to the object.
An example follows defining a trigger named GSORTS_NID_COPY that is attached to the
NID database’s PORTS table.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-77

$MODIFIES
PORTS:NID:TRIGGER:GSORTS_NID_COPY

$ROLES

The $ROLES keyword is followed by a list of the database roles created by the database
segment. Its format is

$ROLES
role name

An example that defines two roles follows.

$ROLES
EWIR_RO
EWIR_DATA1_RW

It is recommended that comments be placed in the segment descriptor to describe what
these roles are for and how they are intended to be used. This is a convenient place to
document such important information.

$ACCESSES

The $ACCESSES keyword is used in a software segment rather than a database segment.
It associates individual applications within a software segment to their supporting database
roles. Its format is

$ACCESSES
application name:role name:segment name

The application name is the name of the executable within the segment. Role name is the
name of the database role used by the application. segment name is the name of the
database segment that owns that role. That segment will be searched by the installer tool,
if necessary, to obtain the DBO account name. An example follows associating the
EWIR_WIDE application to the EWIR_RO role.

$ACCESSES
EWIR_WIDE.FMX:EWIR_RO:EWIRDB

Note: Do not confuse the Database segment descriptor with the
database segment type. The segment descriptor, described in this
subsection, describes specialized processing for the COE to
perform on a segment which is of segment type ‘database.’

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-78

5.5.2.10 DCEClientDef

This segment descriptor is used to define the characteristics of DCE Clients. The server
installation script reads the DCEClientDef section from the SegInfo file for
installation specific information. The associated keywords are used to describe the DCE
client.

Table 5-6 lists the keywords applicable to DCE segments that use the DCE COE
application development library. As indicated in the table, some are for servers only, some
are for clients only, and some may be used for both client and server segments. For a more
complete description of these keywords and the use of the DCE COE library please refer
to the DII COE DCE Programmers Guide.

Keyword Client Server
ACLMGRDEFAULT n/a M
ACLMGRINFO n/a O
ACLMGRTYPE n/a O
ACLMGRUUID n/a O
ATTRIBUTE O O
AUDITINFO n/a O
DCEACL n/a *
DCEADMINGROUP n/a O
DCEBOOT n/a O
DCECLIENT M n/a
DCEGROUP O O
DCESERVICE n/a M
DEBUGMESSAGES n/a O
DFSFILES O O
INTERFACE M M
MESSAGES n/a O
MGMTMAPPING n/a O
OBJUUID n/a M
PERMISSION n/a M
RPCSECURITY n/a O
SERVERTHREADS n/a O
SERVICEABILITY n/a O
UUID n/a M

Legend: M - Mandatory O - Optional
n/a - Not Applicable * - Reserved for Future Use

Table 5-6: DCE Client and Server Keywords

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-79

$ATTRIBUTE

The format for this keyword is the same for both clients and servers. Refer to
subsection 5.5.2.11 for a full description.

$DCECLIENT client:title

client is the name of the client application and title is a brief description of the client
application. DCE client segments require the $DCECLIENT keyword. This provides the
name of the client application and annotation.

Example:
$DCECLIENT CALCclient:Basic calculator client

$DCEGROUP

The format for this keyword is the same for both clients and servers. Refer to
subsection 5.5.2.11 for a full description.

$DFSFILES

The format for this keyword is the same for both clients and servers. Refer to
subsection 5.5.2.11 for a full description.

$INTERFACE client:server:CDS entry

The $INTERFACE keyword identifies the name of the server and the location of the
rpcprofile used to initiate servers. client is the name of the client application, server
is the identity of a server used by the client, and CDS entry is the location in the Cell
Directory Service (CDS) of an rpcgroup or rpcprofile used to initiate a search for
servers. A client may make use of multiple servers, including servers offered by other
segments.

Example:

$INTERFACE CALCclient:CALCserver:/.:/h/CALC/groups/servergroup

Note: Segments which use the DCEClientDef descriptor must also
indicate the DCE segment attribute or else the COE tools will
issue a fatal error.

5.5.2.11 DCEServerDef (UNIX Only)

This segment descriptor is used to define characteristics of DCE servers. It is not required,
nor is it legal, for DCE client applications. The associated keywords are used to describe
the server. The server installation script reads the DCEServerDef section from the
SegInfo file for installation specific information. Table 5-6 lists the applicable keywords

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-80

for describing DCE servers. Note that some of the keywords are also used for describing
characteristics of client segments.

Most of these keywords are used by the standard DCE installation program to set
attributes in CDS, to include attributes within the configuration entry for the application.
Refer to the DII COE DCE Programmer’s Guide for more information.

Before describing the applicable keywords, there are some important things to note about
DCE servers.

· Use $DCESERVICE instead of the $SERVERS keyword (Network descriptor) to
define DCE-based servers.

· Document Distributed File Service (DFS) files with the $DFSFILES keyword.

· Include a $PASSWORDS entry in COEServices to establish a UNIX userid for each

server principal.

· Developers should normally provide a single DCE server in a segment. It would be
unusual to need to provide more than one.

Note: Segments which use the DCEServerDef descriptor must also
indicate the DCE segment attribute or else the COE tools will
issue a fatal error.

 $ACLMGRDEFAULT service:interface:type:name:permissions

Values of the AclMgrDefault attribute are used to give the server ACL an initial set of
values. This attribute is multi-valued and can contain any combination of 'group' or 'user'
ACL entries. The meaning of the parameters are:

· service – The name of the server application. This is the same value as found in the
$DCESERVICE service field.

· interface – The name of an interface implemented by the server. This interface must
match the interface name defined in an IDL file and as defined in the $INTERFACE
keyword.

· type - one of the following values:
· USER
· GROUP
· ANY_OTHER
· UNAUTHENTICATED

· name - Used with USER or GROUP to identify the specific user or groups.
· permissions - This field is defined in the $PERMISSION keyword. The values used

are defined in the name field.

 Following are examples of the $ACLMGRDEFAULT keyword:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-81

$ACLMGRDEFAULT CALCserver:calculator:GROUP:CALC-users:ast
$ACLMGRDEFAULT CALCserver:calculator:UNAUTHENTICATED:t

$ACLMGRINFO service:mgr_name:desc

This keyword provides ACL management information. The parameters are:

· service - The name of the server application. This is the same value as found in the
$DCESERVICE service field.

· mgr_name - The ACL manager name.
· desc - A description (annotation) of the Reference Monitor.

The following is an example:

$ACLMGRINFO CALCserver:calculators:Sample Calculator Refmon

If this keyword is omitted, the ACL manager is given the same name as the server
application (e.g., CALCserver).

 $ACLMGRTYPE service:obj_type:structure_type

 This keyword is reserved to define the structure and type of the data file used to support
the standard ACL Manager. It can contain one or more of the supported object types and
one of the structure types. The meaning for each parameter follows.

· service - The name of the server application. This is the same value as found in the

$DCESERVICE service field.
· obj_type - The following object types have been defined:

· aclobject - supports ACLs on simple objects
· defobject - supports default inheritance ACLs on objects
· defcontainer - supports default inheritance ACLs on containers

 If the keyword is omitted, the default is aclobject.
· structure_type - The following structural attributes are defined:

· flat - the database contains no hierarchical structure
· hier - the database supports full hierarchy (e.g. a filesystem)
· bilevel - the database does not support containers within containers
· sparse - the database supports sparse searching
· noleaf - the database permits hierarchy but only as a side effect of creating a

leaf
If the keyword is omitted, the default is flat.

Note: The initial release supports only flat, bilevel, and hier.

The following is an example:

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-82

$ACLMGRTYPE CALCserver:aclobject:flat

$ACLMGRUUID service:uuid

Every ACL manager defines a UUID that represents a set of permissions supported by the
ACL manager. This keyword allows the user to define this UUID. The parameters are:

· service - The name of the server application. This is the same value as found in the
$DCESERVICE service field.

· uuid - The combined major and minor version numbers identify one generation of an
interface

If the keyword is omitted, a new unique ID is automatically generated.

The following is an example:

$ACLMGRUUID CALCserver:6ba40bf6-e2ee-11cf-8d13-ce9cdd02aa77

 $ATTRIBUTE name:[uuid]:multivalued:encoding:annotation

 The DCE COE library makes use of pre-defined attributes within the CDS configuration
entry for an application. The application can define additional attributes by using the
$ATTRIBUTE keyword. The COE installation process uses this keyword to define the
attribute in the CDS schema.

 Each attribute type definition in the schema consists of attribute type identifiers (UUID
and name) and semantics that control the instances of attributes of this type. An attribute
instance is an attribute that is attached to an object and has a value (as opposed to an
attribute type, which has no values but simply defines the semantics to which attribute
instances of that attribute type must adhere). Attribute instances contain the UUID of their
attribute type.

 The identifiers of attribute types are a name and a UUID. Generally, the name is used for
interactive access and the UUID for programmatic access. The client can also have
$ATTRIBUTE entries so take care not to confuse the two.

 The meaning of each parameter follows:

· name - The name of the attribute.
· uuid - The UUID of the attribute.
· multivalued - Legal values are yes or no. The multivalued flag specifies whether or

not multiple instances of the attribute can be attached to a single application. For
example, if the multivalued flag is set yes, a single application can have multiple
instance of attribute Type A. If the flag is set to no, a single application an have only
one instance of attribute Type A.

· encoding - This defines the legal encoding for instances of the attribute type. The
encoding controls the format of the attribute instance values, such as whether the

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-83

attribute value is an integer, string, a UUID, or a vector of UUIDs that define an
attribute set. Legal values for this parameter are: any, void, printstring,
stringarray, integer, byte, uuid, i18n_data, attrset, and binding.

· annotation - The annotation field is text that describes the function of the attribute.

 The following is an example (this is intended to be a single line):

$ATTRIBUTE unknown_intercell_comms:171e0ff2c-d12e-11de-dd7b-
080009353559:no:integer:Handles intercell access control for foreign
users

$AUDITINFO service:first:num_events:msg code

This keyword establishes the audit event numbering and message code capability. The
parameters are:

· service - The name of the server application. This is the same value as found in the
$DCESERVICE service field.

· first - The first number of the audit event.
· num_events - The number of events.
· msg code - 3-character message component for events (see the $SERVICEABILITY

keyword)

The following is an example:

$AUDITINFO CALCserver:281587713:2:CAL

 $DCEADMINGROUP groupname

 Members of this group are used to control administrative access to application
information. These members are able to change acl’s, add members to groups, start/stop
servers, install/deinstall clients and servers.

· groupname - The administrative group name is normally composed of the segment

prefix and the word “admin.” Therefore if the segment prefix is CALC, the default
group name for administration is CALC-admin. The default setting is SEGMENT-
admin.

 The following is an example:

 $DCEADMINGROUP CALC-admin

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-84

$DCEBOOT service:starton

The $DCEBOOT attribute identifies when a server should be started. The value is a list of
one or more of the following which may not be modified after creation.
· service - The name of the server application. This is the same value as found in the

$DCESERVICE service field.
· starton - One or more of the keywords can be used but must be separated by

semicolons.
· auto - Start if a remote call that would be serviced by this server is received

by dced. This is ignored for those servers that are repositories.
· boot - Start at system startup.
· explicit - Start if dced receives a command to start the server (such as

the server start command in dcecp).
· failure - Start if dced detects that the server exited with a non-successful

error code.

Following are several examples of the $DCEBOOT keyword:

$DCEBOOT CALCserver:boot;explicit;failure

This example states that the CALCserver is started at boot time. If the server exits with
a non-successful error code it will automatically be restarted. The server can also be
started from the command line.

$DCEBOOT CALCserver:boot;failure

This examples shows the CALCserver starting only at boot time and when a error has
occurred.

 $DCEGROUP groupname

 Additional groups may be needed for specific applications. For example a CALC-adders
group might be created for a calculator application containing users who are allowed to
perform the add operation but not the subtract, division or multiplication functions.

· groupname - The name of a user group used to control access to the server services.

The group servername-users is automatically created and does not require a
$DCEGROUP entry..

 The following is an example:

 $DCEGROUP CALC-adders

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-85

$DCESERVICE service:UNIXid[:principal[:group[:org]]]

DCE server segments require the $DCESERVICE keyword. This provides the name of
the server application, ownership and run time authentication principle. The applicable
parameters are:

· service – The name of the server application. A segment may contain multiple servers.
When there is only one server in a segment, the name should be SegPrefserver
where SegPref is the segment prefix. When there are multiple servers in the
segment, each one is identified by a separate $DECSERVICE entry and should be
uniquely named using the segment prefix.

· UNIXid – The UNIX account used in running the server. Usually supplied by a
separate $PASSWORD keyword.

· principal – The name for the DCE principle to use in running the server. Default is the
same as the server.

· group – The group used to control access to server CDS entries. Each server principal
belongs to this group. Default is SEGMENT-servers.

· organization – The DCE organization for the server principal accounts. Default is
none.

 The following is an example of a $DCESERVICE entry with the minimum required
parameters:

 $DCESERVICE CALCserver:CALC

Note: The UNIX account must exist before the segment is installed.

Otherwise the installation will be unsuccessful.

 The following is an example which uses all the parameters:

 $DCESERVICE CALCserver:CALC:CALC:engineering:acom

 In this example the install script will create the DCE account CALC, the group
engineering and the organization acom, if they do not already exist. If these fields are
blank the principal used in running the server is CALCserver, the group is none, and
the organization is none.

 $DEBUGMESSAGES service:routing

 service is the name of the service (e.g., CALCserver) and routing specifies how and
where the debug message should be sent. The format for routing is:

 component:sub_comp.level,...:out_form:dest[;out_form:dest...]
[GOESTO:{sev | component}]

 where out_form, dest, and sev have the same meanings as for the $MESSAGES keyword.
component is the three-character serviceability component code for the program whose

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-86

debug message levels are being specified, sub_comp.level is a serviceability subcomponent
name, followed (after a dot) by a debug level (expressed as a single digit from 1 to 9).
Nine serviceability debug message levels (specified respectively by single digits from 1 to
9) are available. The precise meaning of each level varies with the application or DCE
component in question, but the general notion is that ascending to a higher level (for
example, from 2 to 3) increases the level of informational detail in the messages. Setting
debug messaging at a certain level means that all levels up to and including the specified
level are enabled.

Note: Multiple subcomponent/level pairs can be specified. If there are
multiple subcomponents and it is desired to set the debug level to
be the same for all of them, then the form:
component:*.level will do this (where the * is used as a
wildcard to specify all subcomponents).

 The following are examples of $DEBUGMESSAGES:

 $DEBUGMESSAGES CALCserver:coe:*.9:STDOUT:-
 $DEBUGMESSAGES CALCserver:coe:*.4:TEXTFILE:/tmp/log_%ld;STDERR:-

$DFSFiles

This keyword is similar in purpose to the FilesList segment descriptor
(subsection 5.5.2.13). It is used instead of FilesList because the files listed are
maintained by DFS, not by the native operating system. The keyword is followed by a list
of filenames in the form:

filename access

where filename is the DFS filename used by the application, and access indicates the
operations performed on the file (RWX). All file names shall start with
/.../cellname/fs/.

This keyword is provided for information only.

 $INTERFACE service:interface:title

 The $INTERFACE keyword defines the server interface as presented in the IDL file. This
information must match exactly. The $INTERFACE keyword describes a set of runtime
routines that allows a client program to use a particular service provided by another
application program. The parameters are:

· service – A service entry (server application) from the $DCESERVICE keyword.
· interface – The name of an interface implemented by the server. This interface must

match the interface name defined in an IDL file.
· title - The title of the interface, used as an annotation in the DCE endpoint map.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-87

Example:

$INTERFACE CALCserver:calculator:Basic Sample calculator Application

$MGMTMAPPING service[:string]

This keyword is used to control and configure the management functions that all DCE
applications support. Management functions allow a client to request interface
information, server principal name, or statistics from the server, to ping the server, or to
stop the server. There are five management operations that define the relationship between
permissions understood by the ACL manager/Reference monitor permissions. This
keyword defines the permissions that must be present to allow the client to perform the
management function. The ACL to be checked is attached to the srvrexec object for
the server.

The parameters are:

· service - The name of the server application. This is the same value as found in the
$DCESERVICE service field.

· string - The permissions to allow the client to perform management function. If the
$MGMTMAPPING keyword is not specified or this parameter is omitted, ttttc is
assumed which represents the standard 'test' and 'control' permissions.

The following is an example:

$MGMTMAPPING CALCserver:ttttc

 $MESSAGES service:routing

The $MESSAGES and $DEBUGMESSAGES keywords are used to set DCE serviceability
options. The parameters are:

· service - is the name of the service (Same as in $DCESERVICE)
· routing - how to route messages to their destination. This parameter is of the form

sev:out_form:dest[;out_form:dest . . .] [GOESTO:{sev | comp}]

where

· sev - Specifies the severity level of the message, and must one of the following:
FATAL, ERROR, WARNING, NOTICE, or NOTICE_VERBOSE. If the message is to
apply to all severity levels, use the wildcard character * as the severity level value.

· out_form - Specifies how (e.g., output form) the messages of a given severity level
should be processed. The legal values are BINFILE, TEXTFILE, FILE, DISCARD,
STDOUT, or STDERR. out_form may be followed by a two-number specifier of the
form: .gens.count where gens is an integer that specifies the number of files (i.e.,
generations) that should be kept and count is an integer specifying how many entries

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-88

(i.e., messages) should be written to each file. The wildcard character * may be used
for gens or count to indicate an unlimited number of generations or messages
respectively.

· dest - Specifies where (e.g., destination) the message should be sent and is a pathname.
Filenames may not contain colons or periods. The field can be left blank if the
out_form specified is DISCARD, STDOUT, or STDERR. The field can also contain the
C formatting string %ld in the filename which, when the file is written, will be
replaced by the process ID of the program that wrote the message. Multiple routings
for the same severity level can be specified by adding the additional desired routings as
semicolon-separated strings in the following format:
 NOTICE:BINFILE.50.100:/tmp/log%ld;STDERR:-

· GOESTO - Permits messages for the severity whose routing specification it appears in
to be routed to the same destination as those for the other specified severity level.
Examples are:
 WARNING:STDERR:GOESTO:FATAL
 FATAL:STDERR:;FILE:/tmp/foo
This means that WARNING messages should show up in three places: twice to
stderr, and then once to the file /tmp/foo.

 The following is an example of the $MESSAGES keyword:

 $MESSAGES CALCserver:*:STDOUT:-

 $OBJUUID service:interface:objuuid

 Standard DCE has the ability for servers to associate themselves with “objects” (identified
by uuid’s), and for clients to request a binding to any server providing a specified object.
The objects supported by a server are identified within its rpcentry within CDS. This
facility is designed to allow the location of coarse-grained objects (e.g. specific branches
of a bank, or classes of users). It is not designed for fine-grained objects (e.g. an individual
account in a bank).

 The DCE COE library allows the use of this capability. The server is responsible for
registering supported objects using standard DCE calls. The client must have the uuid’s of
desired objects pre-configured within its services attribute for the appropriate interface.

· service - name of service (same as that listed in the $DCESERVICE keyword)
· interface - name of the interface (same as identified in the $INTERFACE keyword)
· objuuid - The universal unique identifier that identifies a particular RPC object. A

server specifies a distinct object UUID for each of its RPC objects; to access a
particular RPC object, a client uses the object UUID to find the server that offers the
object.

· Sometime the object UUID is the “nil” UUID; when calling an RPC runtime
routine, you can represent the nil UUID by specifying NULL. In this case, the
object UUID does not represent any object.

 The following is an example of the $OBJUUID keyword:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-89

 $OBJUUID CALCserver:calculator:01eb03d6-0688-1acb-97ad-08002b12b8f8

 $PERMISSION service:interface:permission:name:value

 The $PERMISSION keyword is used to define a set of access controls to maintain
control over the interface. There are several ACL bit permissions that are recommended
by OSF, listed in Table 5-7. Additional powers of 2 may be used for application-specific
permissions. In the examples, values 128 and 256 are extensions specific to the CALC
example. These values provide ACL management for the add and subtract interface.

Permission Name Value
r read 1
w write 2
e execute 4
c control 8
i insert 16
d delete 32
t test 64

 Table 5-7: Recommended ACL Bit Permissions

The meaning for each parameter is as follows:
· service – A service entry (server application) from the $DCESERVICE keyword
· interface – The name of an interface implemented by the server. This interface must

match the interface name defined in an IDL file.
· permission - A single character value used within ACL permission strings.
· name - A short title for the permission, used primarily as a comment.
· value - A numeric value for the permission. Must be a power of two. If possible,

choose a permission value from Table 5-7 but additional values may be used if
necessary. The assignment of different meanings to the values in this table is strongly
discouraged.

 The following are examples of entries in the SegInfo file:

 $PERMISSION CALCserver:calculator:c:control:8
 $PERMISSION CALCserver:calculator:t:test:64
 $PERMISSION CALCserver:calculator:a:add:128
 $PERMISSION CALCserver:calculator:s:substract:256

 $RPCSECURITY service:interface:security

 The $RPCSECURITY keyword specifies the protection levels supported. These levels
identify how much information in network messages is encrypted.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-90

· service - is the name of the service implementing the interface (Same as in
$DCESERVICE)

· interface - is the name of the interface (Same as in $INTERFACE)

The security parameter is composed of several fields:

authentication type:[principle name:protection
level:authentication service:authorization service]

where

authentication type is one of the following:

· none - This type has no further information.
· dce - This type is followed by the following fields:

· principle name
· protection level - one of the following values:

· default - Uses the default protection level for the specified
authentication service.

· none - There is no protection level.
· connect - Performs authentication only when a client and server

establish a relationship (or connection). This level performs an
encrypted handshake when the client first communicates with the
server. Encryption or decryption is not performed on the data sent
between the client and server.

· call - Attaches a verifier to each client call and server response that
protects the system -level metadata of every RPC call (but not the
application-level data). This level does not apply to remote procedure
calls made over a connection-based protocol sequence.

· pkt - Ensures that all data received is from the expected client. This
level attaches a verifier to each message.

· pktinteg - In addition to protecting metadata, ensures the integrity
of the application-level data (RPC call and return parameters)
transferred between two principals, that is, that none of it has been
modified in transit.

· pktprivacy - In addition to protecting metadata and integrity,
encrypts all application-level data, thus guaranteeing its confidentiality.

· authentication service - one of the following:
· default - DCE default authentication service.
· none - No authentication.
· secret - DCE shared-secret key authentication.

· authorization service - This is the process of checking a client’s permissions to
an object that is controlled by the server. Access checking is entirely a server
responsibility. Possible values are:

· default - No authorization information is provided to the server,
usually because the server does not perform access checking.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-91

· name - Only the client principal name is provided to the server. The
server can then perform authorization based on the provided name.

· dce - The client’s credentials is provided to the server with each
remote procedure call that is made using the binding parameter.

 Examples of the $RPCSECURITY keyword are:

$RPCSECURITY CALCserver:calculator:dce:CALCserver:default:default:dce
$RPCSECURITY CALCserver:calculator:dce:CALCserver:pktprivacy:secret:dce

$SERVERTHREADS service:num_threads

This keyword defines the number of call threads that the DCE runtime creates in order to
service incoming RPC requests. Parameters are:

· service - The name of the server application. This is the same value as found in the
$DCESERVICE service field.

· num_threads - The number of threads allocated. If not specified the default is 5.

The following is an example:

$SERVERTHREADS CALCserver:5

 $SERVICEABILITY service:code

 This keyword identifies the serviceability message code for the application, as defined in
the application serviceability messages file. The serviceability messages file defines
message text and audit message numbers for use by the application. All serviceability
messages contain a six-letter sequence identifying the “technology” and “component” that
generated the message.18 Determine a three-letter lower case component name for the
application derived from the segment prefix (e.g., In the example used in this subsection,
CALC is the segment prefix so the “component” part is cal). These three letters will
appear on every system-generated message from the application. Insert the component
name in the front of the SAMS file, as shown in the sample below. There are no
differences in defining a SAMS file for a COE application compared to any other DCE
application.

Note: If using the sample application CALC.sams file as a template,
there are numerous places where the component name is used in
variable names by convention, and must be changed for a different
application.

 # Part I
 # This part defines the lowest-level table, the one that contains

 18 Applications are supposed to be identified with the technology dce and an identifying number assigned
by the OSF. Until a block of numbers are assigned for COE applications, a unique component name
derived from the segment prefix should be used.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-92

 # all the messages (defined in the third part) in a
 # straight array.
 component cal
 table cal_table
 technology dce

 The DCE COE library functions make use of the OSF DCE 1.1 serviceability interfaces to
generate and manage error messages. The server management interface allows messages
of different severity to be turned on or off and routed to different locations (e.g. error log,
stderr, etc.).

 The parameters for this keyword are:

· service - is the name of the service (Same as in $DCESERVICE)
· code – This is a three-letter component used to identify serviceability message files and

serviceability messages for this server. It can be a number or lower case text.

 The following is an example of a $SERVICEABILITY keyword:

 $SERVICEABILITY CALCserver:cal

 $UUID service:interface:uuid version

 This is the interface UUID. Each DCE interface has a unique identifier (UUID) to ensure
compatibility of the client and server. This UUID identifies a specific RPC interface. An
interface UUID is declared in an RPC interface definition (an IDL file) and is required
element of the interface and the SegInfo file.

· service – A service entry (server application) from the $DCESERVICE entry
· interface – The name of an interface implemented by the server. This interface must

match the interface name defined in an IDL file.
· uuid version - The combined major and minor version numbers identify one generation

of an interface. Version numbers (1.0) allow multiple versions of an RPC interface to
coexist. Strict rules govern valid changes to an interface and determine whether
different versions of an interface are compatible. The offered and requested interface
are compatible under the following conditions:

· The interface requested by the client and the interface offered by the server

have the same major version number
· The interface requested by the client has a minor version number less than or

equal to that of the interface offered by the server.

 An example of the $UUID keyword is:

 $UUID CALCserver:calculator:0073a028-fbdb-1e53-908e-08002b13ca26 1.0

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-93

5.5.2.12 Direct

The segment descriptor Direct allows a segment to issues special instructions to the
installation tools. If the segment is part of an aggregate, the directives below apply only to
the segment in whose SegDescrip subdirectory the directives appear.

$ACCTADD:executable

This keyword informs the installation software that the specified executable, in the
segment’s bin subdirectory, should be run each time a user account is added to the
system. VerifySeg will flag use of this keyword as a warning to highlight that it is
being used. Prior permission must be given by the Chief Engineer before this keyword can
be used.

$ACCTDEL:executable

This keyword informs the installation software that the specified executable, in the
segment’s bin subdirectory, should be run each time a user account is deleted from the
system. VerifySeg will flag use of this keyword as a warning to highlight that it is
being used. For security reasons, prior permission must be given by the Chief Engineer
before this keyword can be used.

$CMDLINE

Segments which provide a command-line access must insert this keyword in their segment.

$KEY:request:key

Several of the keywords presented here require authorization by the Chief Engineer. Thus,
$KEY must be provided for each requested permission. key is the authorization key
provided by the Chief Engineer. request is an indication of the type of request being made.
Requests are grouped by the type of request being made (e.g., security-related,
installation-related) and are one of the following values:

INSTALL for permission to run PostInstall, PreInstall, and
DEINSTALL with root permission

ACCTS to use any of the account creation/deletion keywords (e.g.,
for $ACCTDEL, $ACCTADD, $PROFADD, $PROFDEL,
and $PROFSWITCH)

CMDLINE to use the $CMDLINE keyword
SUPERUSER to use the $SUPERUSER keyword

A separate authorization key and $KEY entry is required for each request group, but the
key applies to any and all requests within that group.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-94

$NOCOMPRESS

The MakeInstall tool automatically compresses segments to reduce the amount of
space required on disk or tape, and to reduce the download time. The installation tools
automatically decompress segments at installation time. The $NOCOMPRESS keyword
indicates that compression is not to be performed.

$PROFADD:executable

This keyword operates in the same fashion as $ACCTADD, except that it is used when
profiles are added to the system.

$PROFDEL:executable

This keyword operates in the same fashion as $ACCTDEL, except that it is used when
profiles are added to the system.

$PROFSWITCH:executable

This keyword is similar to $PROFADD except that the executable is run whenever a user
currently logged in switches from one profile to another. The executable is not run when
the user first logs in; it is run only when a profile switch is made.

$READ_ONLY

This keyword informs the installation software that the segment can be run from a read-
only medium (e.g., CDROM). This implies that the segment does not modify any files
under its installation directory.

$REBOOT

The presence of this keyword indicates that the installation software should automatically
reboot the computer after the segment is loaded. If several segments have been selected
for loading at one time, the reboot operation will not occur until all segments have been
processed. The operator will be notified before the reboot occurs and given the option to
override the reboot directive.

$REMOTE[:XTERM | :CHARBIF]

This keyword indicates that the functions (all functions) provided by this segment can be
executed remotely. At installation time, the installation software will note that this
segment can be executed remotely. If the XTERM attribute is present, it indicates that the
segment can also be accessed via an “xterm” capability, and output will be routed to the
display surface pointed to by the DISPLAY environment variable setting. If the CHARBIF
attribute is present, it indicates that the segment supports a character-based interface.
CHARBIF and XTERM will normally be mutually exclusive.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-95

By default, segments are assumed to be locally executable only.

$ROOT:PostInstall | PreInstall | DEINSTALL

The presence of this keyword indicates that the specified descriptor must be run with root
privileges. A separate $ROOT entry is required for each descriptor. VerifySeg will flag
use of this keyword as a warning to highlight that it is being used. For security reasons,
prior permission must be given by the Chief Engineer before this keyword can be used.
$ROOT requires the $KEY keyword as well.

$SELF_CONTAINED

This keyword informs the installation software that the segment remains in its original
condition after installation, with all files intact under the installation directory. It also
informs the installation software that any changes made during installation (e.g. in
PreInstall and PostInstall) do not have side effects if run multiple times. This
allows the installation software to use an installed version of this segment as the source
medium for a subsequent installation on another machine.

$SUPERUSER

Segments which provide or require superuser privileges, via a command-line or otherwise,
must insert this keyword in their segment. Note that the $KEY keyword must also be used
to verify that Chief Engineer approval has been obtained.

$USES_UNINSTALL

This keyword applies to NT segments only. The segment installer software normally
handles registration of “uninstall” information for segments. However, some segments,
particularly COTS segments, may already do this themselves. In such cases, the segment
must use the $USES_UNINSTALL keyword to indicate to the segment installer that the
segment itself is handling uninstall registration. When this keyword is present, the segment
installer does not perform any uninstall registration during installation. This keyword may
only be used for COTS segments or as authorized by the Chief Engineer.

5.5.2.13 FilesList

FilesList is a list of files and directories that make up the current segment. It is
required for COTS segments. For other segment types, it is useful for documenting
community files modified or used by the segment. The reason that this descriptor is
required for COTS segments is that COTS products do not usually conform to the DII-
mandated directory structure. Therefore, the location of files modified by or contributed
by the segment is not usually readily apparent.

FilesList may contain the following keywords:

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-96

$DIRS a list of directories which this segment adds to the system. All files in
the directory are assumed to belong to the segment.

$FILES a list of files which this segment adds to the system.

$PATH a shortcut for specifying a pathname. Succeeding $DIRS or $FILES
are relative with respect to the path specified.

A keyword must precede any list so that it will be clear whether a directory or a file is
intended.

As an example, assume a segment to be installed creates the following four subdirectories

/h/data/test/data1
/h/data/test/data2
/h/data/opt/data3
/usr/opt/temp

and adds three files (f1, f2, f3) to the /etc subdirectory. Then the file FilesList
could contain the following entries:

$PATH:/h/data
$DIRS
test/data1
test/data2
opt/data3
$DIRS
/usr/opt/temp
$PATH:/etc
$FILES
f1
f2
f3

The $DIRS keyword before /usr/opt/temp is not necessary, but is shown to
illustrate that FilesList may contain multiple occurrences of the keywords.

For COTS products, this descriptor must be used to list:

1. all files and directories the product adds that lie outside the segment’s assigned
directory, and

2. any community file the COTS product modifies unless the modification is made by the
COE installation tools.

For example, assume a COTS segment adds a port to /etc/services through the
COEServices segment descriptor. Further, assume that the vendor provides a program
that directly modifies the /etc/group file as part of the installation process. Then

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-97

FilesList must list /etc/group but does not need to include /etc/services
because the installation tool modifies it as a result of the COEServices descriptor.

5.5.2.14 Hardware

The Hardware descriptor defines the computing resources required by the segment.
Keywords $CPU and $MEMORY may appear only once; both are required for all segments,
except that $MEMORY may be omitted for a data segment. $DISK and $PARTITION are
mutually exclusive, but one must appear in the segment descriptor. $DISK may appear
only once, but $PARTITION may appear multiple times. $OPSYS and $TEMPSPACE
are optional.

$CPU:platform | ALL

platform is one of the supported platform constants listed in subsection 5.3 for
MACHINE_CPU, or ALL. If ALL is given, it indicates that the segment is hardware
independent (e.g., a data segment). If platform is a generic constant (e.g., HP or PC), it
applies to all platforms of that class. Thus,

$CPU:PC

indicates that the software can be loaded on any PC, whether the PC is a 386, 486, or
Pentium class machine. However,

$CPU:PC386

indicates that the software can be loaded on a 386 or better class platform. Similarly,
HP712 indicates that the software can be loaded on an HP712 or better class platform that
is binary compatible with the HP712.

$DISK:size[:reserve]

size is expressed in kilobytes and is the size of the segment, including all of its
subdirectories, at install time. The COE tool CalcSpace (see Appendix C) will compute
the disk space occupied by a segment and update this keyword. reserve is also expressed
in kilobytes and is the additional amount of disk storage to reserve for future segment
growth.

$MEMORY:size

size is expressed in kilobytes of Random Access Memory (RAM) required.

$OPSYS:operating system | ALL

operating system is one of the supported platform constants listed in subsection 5.3 for
MACHINE_OS, or ALL. If ALL is given, it indicates that the segment is operating system
independent. Dependencies on a particular version of the operating system are defined in

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-98

the Requires descriptor where a dependency on a specific segment (e.g., operating
system with a particular version) is described.

$PARTITION:diskname:size[:reserve]

This keyword allows segments to reserve space on multiple disk partitions. The
installation software will not split a segment across disk partitions, but the segment may
do so in a PostInstall script. Use of multiple disk partitions is discouraged.

size and reserve have the same meanings as for $DISK. For UNIX platforms, diskname is
either an explicit partition name (e.g., /home2) or an environment variable name of the
form DISK1, DISK2, ... DISK99. The installation software will set the environment
variables DISK1, DISK2, etc. to the absolute pathname for where space has been
allocated. These environment variables are defined for PreInstall and
PostInstall, but not for DEINSTALL. $PARTITION keywords are assumed to be
in sequential order, so that environment variable DISK1 will refer to the first keyword
encountered, DISK2 to the second, etc.

For NT platforms, diskname must be a disk drive name. For example,

$PARTITION:”D:”:2048

requests 2MB of space on the “D” disk drive.

For example, suppose a Tactical Decision Aid (TDA) is compiled to run on an HP, a
Solaris, and an NT platform. Assume for the HP it requires 512 K of memory, requires
1 Megabyte (MB) of disk storage for the program and its data files, and will expand over
time to a maximum of 4 MB. For Solaris, assume it requires 576 K of memory, 1.5 MB
for initial disk space, and will expand to 5 MB. For a PC, assume the requirements are the
same as for the Solaris machine. The proper Hardware file is

#ifdef HP
$CPU:HP
$DISK:1024:3072
$MEMORY:512

#elif SOL
$CPU:SOL
$DISK:1536:3584
$MEMORY:500

#elif PC && NT
$CPU:PC486
$DISK:1536:3584
$OPSYS:NT
$MEMORY:571

#endif

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-99

Note that this example indicates that the information described is the same for all HP
platforms, the same for all Solaris platforms, but that it only applies to PC486 or better
machines running Windows NT.

As another example, assume a data segment is to be allocated across three disk partitions.
Further assume that the first partition must be /home5 and requires 10 MB, but the
remaining space required is 20 MB each and can be on any available disk partition. The
proper $PARTITION statements are:

$PARTITION:/home5:10240
$PARTITION:DISK2:20480
$PARTITION:DISK3:20480

Assume that the installation software is able to allocate space on /home5 as requested,
and that the remainder of the space requested is on /home18. The installation software
will set the following environment variables:

setenv DISK1 /home5
setenv DISK2 /home18
setenv DISK3 /home18

$TEMPSPACE:size

Some segments may need temporary space during the installation process. The
$TEMPSPACE keyword requests that size kilobytes of disk space be allocated for
temporary use during the installation process. If space is available, the installation software
sets the environment variable COE_TMPSPACE to the absolute path where space was
allocated. If space is not available, an error message is displayed to the operator and the
segment installation fails. The installation software automatically deletes the allocated
space when segment installation is completed. Space is allocated prior to executing
PreInstall.

5.5.2.15 Help

This segment descriptor is a place holder for a future COE revision. Its purpose is to
provide a mechanism for identifying and managing help files within the system. Segment
developers should use this descriptor now to reduce migration problems later.

As Figure 5-2 indicates, segment help files are located directly underneath the directory

SegDir/data/Help

They are listed individually in the Help segment descriptor and grouped according to
their format. Help file format is identified by one of the following keywords:

$HTML a list of help files in HTML format.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-100

$MAN a list of help files in UNIX man page format.

$MSHELP a list of help files in Microsoft Help format (NT only).

$TEXT a list of help files in plain ASCII text format (i.e., no graphics or special
characters).

$OTHER a list of files in a format other than that identified by the preceding
keywords.

The order in which these keywords is listed is not important and they may be repeated
multiple times within the segment descriptor. HTML is the COE-standard format, but the
other formats are provided to assist legacy system migration.

For example, assume a segment contains two HTML-format help files (H1 and H2),
UNIX man pages (man1 and man2), three ASCII text files (T1, T2, and T3), and one
help file in an internal format (doc1). Then the proper Help segment descriptor entries
are:

[Help]
$HTML
H1
H2
$MAN
man1
man2
$TEXT
T1
T2
T3
$OTHER
doc1

5.5.2.16 Icons

The Icons descriptor is used to define the icons that are to be made available on the
desktop to launch segment functions. The format of the descriptor is a list of files
underneath data/Icons that define icon bitmaps and their associated executables. Refer
to the Executive Manager API documentation for a description of the file format.

5.5.2.17 Menus

Use the Menus descriptor to list the names of menu files contained within the segment.
Figure 5-2 shows that segment menu files are located underneath data/Menus. Refer to
the Executive Manager API documentation for the menu file format.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-101

For account groups, this descriptor is simply a list of the account group’s menu files. For
other segments, the format of each line is

menu file[:affected menu file]

where menu file is the name of a menu file underneath the segment’s data/Menus
subdirectory, and affected menu file is the account group menu file to update. If multiple
account groups are affected, as listed in the SegName descriptor, each affected account
group is updated. If no affected menu file is listed, then menu file is simply added to the
list of menu files which comprise the account group’s menu templates.

For example, suppose a segment called ASWTDA has four menu files in the data/Menus
subdirectory: System, MoreStuff, ASWTDA, and Logging. Assume that System is
to be added to the affected account group’s System menu file, and MoreStuff is to be
added to the affected account group’s Default menu file. The proper entries are as
follows:

System:System
MoreStuff:Default
ASWTDA
Logging

5.5.2.18 Network

The Network descriptor is used to describe network-related parameters. Use of this
descriptor requires prior approval by the DII COE Chief Engineer and its use is restricted
to COE-component segments, except for DCE Servers which are not necessarily COE-
component segments. VerifySeg will strictly fail any segment that includes this
descriptor unless it is a COE-component segment or it is a DCE server.

One or more entries may follow each keyword listed below.

$HOSTS

IP addresses and hostnames are generally established by a system or network
administrator. Segments may add IP addresses and host names as follows:

$HOSTS
LOCAL | REMOTE :IP address:name{:alias}

where IP address, name, and alias are as defined for the UNIX /etc/hosts file. If the
IP address specified already exists in the network hosts file, the name and alias entries are
added as alias names. If LOCAL is specified, the entry is made only to the local network
hosts file. If REMOTE is specified, the entry is applied to the NIS/NIS+ or Domain Name
Service (DNS) server. If REMOTE is specified but neither NIS/NIS+ or DNS are installed,
it will default to LOCAL.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-102

Segments should rarely need to directly add host table entries. VerifySeg will issue a
warning for any segment which adds host table entries.

$KEY:Network:key

key is the authorization key given to the segment developer by the Chief Engineer. This
entry is required only once within the section, and it applies to all entries within the
section.

$MOUNT (UNIX only)

The $MOUNT keyword is used to specify NFS mount points. The syntax is

hostname:NFS mount point:target dir

where hostname is the name of a platform on the network, NFS mount point is the file
partition to mount, and target dir is where to mount the requested partition on the local
machine. If target dir does not exist on the local machine, it will be created.

For example, the sequence

$MOUNT
dbserver:/home3/USERS:/h/USERS

will perform the UNIX equivalent of

mount dbserver:/home3/USERS /h/USERS

If the hostname specified is the same as the local machine, a mount is not performed.
Instead, the NFS mount point is made available for other platforms to mount. If a mount is
performed as a result of processing this keyword, the system will automatically reboot the
system after segment installation is completed. It performs as if the $REBOOT keyword
(see the Direct descriptor) were encountered; that is, the operator is notified that a
reboot is required and given an option to override the reboot directive.

$NETMASK:mask

This keyword allows a COE-component segment to set the subnet mask to mask. This
should rarely be required since the netmask is normally established as part of the COE
kernel. If two COE-component segments attempt to set the netmask, the last segment
loaded succeeds.

$SERVERS

Most COE services are implemented as servers. This keyword allows a segment to list the
non-DCE servers, by symbolic name, that it contains. These servers are registered with the

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-103

COE so that other segments can obtain their location through the COEFindServer
function (see Appendix C).

Note: Servers implemented through DCE functions should not use this
keyword. The DCEServerDef descriptor should be used
instead.

Each name listed is added to a table maintained by the COE of all servers in the system.
This table is used by the System Administration software to allow a site administrator to
indicate which platform actually contains the server. The name given is added as an alias
to the network host table for the platform that contains the server. If NIS/NIS+/DNS are
being used, the alias is added to the NIS/NIS+/DNS-managed host table. Otherwise, it is
added to /etc/hosts.

For example, assume a COE-component segment contains two servers named
masterTrk and masterComms. Assume that this segment is loaded on two
workstations: sys1 and garland. Some servers are designed to recognize whether they
are the master server or are a slave to a master server located elsewhere. For this reason,
the COE must handle situations where the same segment is loaded on a server and a client
machine. Assume in this example that the segment operates as a master server on sys1,
but as a slave on garland.

The following statements identify the servers contained within this segment:

$SERVERS
masterTrk
masterComms

When the segment is loaded, the installation software performs the following actions:

1. Add masterTrk and masterComms to the COE-maintained list of servers if they
are not already there.

2. Check to see if masterTrk or masterComms already exist in the network host
table. If so, processing is completed.

3. Otherwise, ask the operator if this is the server platform for masterTrk and
masterComms.

4. If the operator answers “no” to the previous question, processing is complete.
5. If the answer is “yes,” update the network host table to contain masterTrk and

masterComms as aliases for the machine being loaded.

Note that this approach does not require the server (sys1) to be loaded prior to the client
(garland). Furthermore, the site administrator can later change the configuration
because all necessary information is available to the System Administrator software. Also
note that the segment does not require the actual hostnames or IP addresses.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-104

Hostnames are site-specific and cannot be predicted in advance. Therefore, the COE
requires that segments use meaningful symbolic names as illustrated here instead of
making assumptions about a specific hostname or naming convention.

5.5.2.19 Permissions

The Security Administrator software provides the ability to describe objects (files, data
fields, executables, etc.) which are to be protected from general access. This information is
used to create profiles which limit an operator’s ability to read or modify files.
Applications may query the security software to determine the access permissions granted
to the current user. The Permissions file is the mechanism by which segments describe
objects and what permissions to grant or deny for the objects.

This descriptor is a sequence of lines of the form:

object name:permission abbreviation:permission

object name is the item to be controlled, permission is the type of access to grant or deny
(add, delete, read, etc.), and permission abbreviation is a single character abbreviation for
the permission.

Permission abbreviations specified for an account group must agree with all segments
which become part of the group. The following are reserved abbreviations and their
meanings:

A - Add
D - Delete
E - Edit
P - Print
R - Read
V - View
X - Transmit

Segments may use additional abbreviations as required.

For example, suppose a segment generates reports that are to be protected. Permissions
relevant to reports are delete, print, read, and archive. The proper Permissions file is:

Reports:D:Delete:P:Print:R:Read:Z:Archive

(Z is used to indicate archive permission in this example.)

If the Permissions file is missing, the security software will report that no access
permissions are to be granted for the requested object.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-105

5.5.2.20 Processes

Use the Processes descriptor to identify non-DCE background processes (see
subsection 5.10.6). The format of the descriptor is a keyword which identifies the type of
process, followed by a list of processes to launch in the form

process {parameters}

where process is the name of the executable to launch, and parameters are optional
process-dependent parameters. Output from the process is piped to /dev/null. For
example, suppose TestProc is a background process which accepts two parameters, -t
and -c. It will be launched in a manner equivalent to

TestProc -t -c >& /dev/null &

Valid keywords to identify process type are:

$BOOT specify a list of processes to launch at boot time
$BACKGROUND specify a list of background processes
$PERIODIC specify a list of background processes to run at some

specified interval
$PRIVILEGED specify a list of processes to run in privileged (i.e., “root”)

mode (available for UNIX only)
$RUN_ONCE specify a list of “one-shot” processes to run the next time

the system is started, but only the next time the system is
started and never thereafter

$SESSION specify a list of login session processes
$SESSION_EXIT specify a list of processes to run prior to terminating a login

session

The $PERIODIC keyword requires specification of the required interval, in hours. The
format is

$PERIODIC:hours

where hours is a decimal value.

Executables are assumed to be in the segment’s bin subdirectory. The $PATH keyword
can be used to indicate a different location. The syntax for the $PATH keyword is

$PATH:pathname

where pathname may be either a relative or an absolute pathname. If the pathname is
relative, it is relative to the segment’s home directory.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-106

Use of boot-time, background, periodic, privileged, and “one shot” processes requires
authorization by the Chief Engineer. Therefore, the $KEY keyword must be specified
once, in the form

$KEY:Processes:key

The authorization key applies to all requests within the Processes segment descriptor.

The Processes descriptor is a powerful capability the COE provides for managing
application processes. Refer to documentation in the Developer’s Toolkit for more
detailed information on this descriptor.

Note: DCE processes are not described with the Processes
descriptor. Use the applicable DCE keywords within
DCEServerDef and DCEClientDef instead.

5.5.2.21 Registry (NT only)

The Registry segment descriptor allows segments to add entries to the NT registry. It
is followed by a list of keys and filenames, underneath the segment’s data/Registry
subdirectory, whose contents are the key values to add to the registry. VerifySeg will
generate an error if any of the files listed do not exist.

The parameters for this keyword are

keyloc:registry description file

where keyloc is the root location in the registry to add key values found in the file
registry description file. At present, keyloc may have only the value

$HKEY_LOCAL_MACHINE\SOFTWARE\COE.

Future revisions may expand the keyloc parameter.

Consider the following example.

[Registry]
$HKEY_LOCAL_MACHINE\SOFTWARE\COE:MyEntries

This indicates that the segment contains a file named MyEntries located under the
directory SegDir/data/Registry (where SegDir is the segment’s assigned
directory). The contents of the file MyEntries will be added to the registry under the
key

HKEY_LOCAL_MACHINE\SOFTWARE\COE\SegType\SegDir

where SegType is the segment’s type and SegDir is the segment’s assigned directory.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-107

Following is the format of the registry description file:

$KEY:key-name
$STRING:Name:StringValue|$BINARY:Name:BinaryValue|$DWORD:Name:DwordValue

where key-name is the name of the subkey to create beneath

keyloc\SegType\SegDir

· key-names may include ‘\’s to indicate that subkeys are to be created.

· The $STRING, $BINARY, and $DWORD keywords signify a string, binary or double-
word name/value pair that is to be maintained beneath the given key. The given Name
follows the keyword and then the value follows.

· At least one $KEY must be specified in the registry description file. Multiple $KEY’s
may be specified in the registry description.

· All $STRING, $BINARY, and $DWORD settings must appear at the beginning of a
line. These settings are not required and if omitted the given key will be created
without any name/value pairs. There may be multiple $STRING, $BINARY, and
$DWORD settings per $KEY and the order in which they are listed is not important.

The following example is for a software segment whose segment directory is SegA.
Assume that key values are in the file settings.dat located underneath the directory
SegA/data/Registry. The proper Registry descriptor entry is

[Registry]
$HKEY_LOCAL_MACHINE\SOFTWARE\COE:settings.dat

The following are example entries for settings.dat:

$KEY:Analyze
$STRING:ControlFile:\Program\Analyze\Control.dat
$DWORD:UsageCount:0
$KEY:Defragment
$STRING:ControlFile:\Program\Defragment\Control.dat
$DWORD:UsageCount:0
$KEY:Reporting
$STRING:ControlFile:\Program\Report\Control.dat
$STRING:Example1:Callsign is Foxtrot Tango 3
$STRING:Example2:Response is “Spring time 3!”
$DWORD:UsageCount:21
$BINARY:Encoding:17
Here are several keys with no name/value pairs that also
illustrates creating subkeys
$KEY:Reporting\Type1
$KEY:Reporting\Type2
$KEY:Reporting\Type3

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-108

The above example creates the following registry entries:

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Analyze
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Defragment
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type1
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type2
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type3

Note that the values given for both the $DWORD and $BINARY parameters are given in
decimal format, but will appear in hexadecimal format ($DWORD) and binary format
($BINARY) when viewed from the NT registry editor window.

The registry capability must be used with great care.

· The installer tools will remove registry entries added with this segment descriptor
when the segment is deleted.

· Segment developers shall not create root keys.

5.5.2.22 ReqrdScripts (UNIX only)

Use the ReqrdScripts descriptor to define the files that establish the runtime
environment (account group segment types) or to define files to extend the runtime
environment (all other segment types). For account group segments, the syntax is one or
more lines of the form:

script name:C | L

where C means to copy and L means to create a symbolic link. This flag is used when
login accounts are created to either copy environment files to the user’s login directory or
to create a symbolic link. There can be a maximum of 32 scripts. A script name is
restricted to a maximum length of 32 characters.

For example, the ReqrdScripts file for the System Administrator account group is

.cshrc:C

.login:C

The descriptor format for segment types other than account group is slightly different:

script name:env ext name

where script name is the name of a script in the affected account group’s Scripts
subdirectory and env ext name is the name of an environment extension file in the present
segment’s Scripts subdirectory.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-109

For example, assume a segment loaded under /h/TstSeg with a segment prefix TST is
to be added to the System Administrator application and it requires extending the
.cshrc file. The proper ReqrdScripts entry is:

.cshrc:.cshrc.TST

The installation tools will insert the statements

if (-e /h/TstSeg/Scripts/.cshrc.TST) then
source /h/TstSeg/Scripts/.cshrc.TST

endif

into the file /h/AcctGrps/SysAdm/Scripts/.cshrc. When the segment
TstSeg is deleted, the installation tools will remove these statements.

Refer to documentation in the Developer’s Toolkit for more information.

5.5.2.23 Requires

Segment dependencies are stated through the Requires descriptor. The format is:

[$HOME_DIR:pathname]
[$LIB:library name[:library path]]
segment name:prefix:home dir:[version{:patch}]

Segments will not be loaded until all segments they depend upon are loaded. For this
reason, the parent segment for an aggregate must not list child segments in the
Requires descriptor.

Note: The parent segment for a child does not need to be listed in the
child’s Requires descriptor. By virtue of naming the aggregate
parent in SegName, there is an implied dependency.

The optional $HOME_DIR keyword is used in situations where a segment must be loaded
onto the disk in a particular place. This technique should be avoided.

The optional $LIB keyword is used to identify a dependency on shared libraries. library
name describes the shared library or Dynamic Link Library (DLL) on which the segment is
dependent. The shared file is normally located in the dependent segment’s bin directory;
however, library path can be used to define a different path for the shared file.

For example, assume the segment TEST must be installed in the directory
/home3/tmp/TEST, it requires version 3.0.2 of segment SegA with patches P1 and
P4, and also requires SegB version 5.1.1. The Requires descriptor is

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-110

$HOME_DIR:/home3/tmp/TEST
SegA Name:SEGA:/h/SegA:3.0.2:P1:P4
SegB Name:SEGB:/h/SegB:5.1.1

In some cases, it may be possible that a segment dependency can be fulfilled by one or
more segments. This is indicated by bracketing such segments with braces and using the
keyword $OR between acceptable alternatives.

As an example, suppose the segment TEST above has a dependency that can be satisfied
by SegA or the combination of SegB and SegC. The proper Requires descriptor is

$HOME_DIR:/home3/tmp/TEST
{

SegA Name:SEGA:/h/SegA
$OR

SegB Name:SEGB:/h/SegB
SegC Name:SEGC:/h/SegC

}

Multiple bracketed alternatives may appear in the same descriptor.

5.5.2.24 Security

The Security descriptor is of the following form

classification{:caveat}

where classification indicates the highest classification level for the segment (UNCLASS,
CONFIDENTIAL, SECRET, TOP SECRET). The optional list of caveats is used to
document releasability restrictions. If the segment contains items with multiple
classification levels, the highest classification level must be specified. If the segment has
multiple releasability restrictions, the most restrictive ones should be listed as caveats.

Note: This descriptor is required and its purpose is primarily for
documentation. Caveats are not used for any other purpose but
the classification is used by the installation tools to determine
whether or not a segment should be loaded onto a platform. The
segment’s classification level is compared against the platform’s
current classification level (as displayed in the security banner)
and is not loaded unless the platform level dominates the segment
classification level. This feature is not to be considered a trusted
capability but is merely provided as an aid to the installer. The
classification and caveat must not be confused with data labeling
or other security features provided by trusted systems.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 5-111

5.5.2.25 SharedFile

This segment descriptor handles installation of NT shared DLLs and UNIX shared
libraries. It is followed by a list of filenames that are the names of the shared libraries
(UNIX) or DLLs. They must be located in the segment’s bin subdirectory, which is the
DII-compliant location for shared files. VerifySeg issues an error message if a filename
listed does not exist under the segment’s bin subdirectory. Shared files must use the
segment prefix naming convention to assure that the names are unique.

The SharedFile descriptor accepts two keywords: $FILENAME which is required and
$PATH which is optional. The format for each follows.

$FILENAME:filename

This keyword establishes the shared library or DLL filename (parameter filename).

$PATH:pathname

This is an optional keyword which provides the directory path pathname of the file when
it is not located in the segment’s bin directory.

Note: The path is very important in a UNIX environment as the shared
library must be placed in the same location as when the
executable binary was created; otherwise, the binary will not
execute.

At installation time, the segment installer copies the shared file to the directory
/h/COE/Shared, deletes the shared file from the segment’s bin subdirectory, and then
creates a symbolic link from /h/COE/Shared to the original location. This is done so
that the search path for finding shared files does not need to include any entry other than
/h/COE/Shared. Segments which have a dependency upon the shared file must identify
the segment which provides the shared file in the Requires segment descriptor.

Installation requires special care to ensure that a segment which provides a shared
library/DLL is not removed when there are segments still installed that require it. For this
reason, the installer maintains a usage counter for the shared file. When the segment which
“owns” it is installed, the count is set to 1. As segments which depend upon it are installed
or removed, the counter is incremented or decremented as appropriate. The installation
tools thus prevent the “owning” segment from being removed until the usage count
indicates there are no more dependent segments installed.

Shared libraries/DLLs require specific consideration within the COE.

· Segments must state dependencies on the segment providing the shared library/DLL,
not the actual file itself.

Segment Descriptors and Descriptor Files

5- July 1997 DII COE I&RTS: Rev 3.05-112

· One segment may not update a shared library/DLL “owned” by another segment. This
would otherwise contradict the fundament COE principle that objects (resources, files,
etc.) may be modified only by the segment which owns the object, or by the COE.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 5-113

5.6 Segment Installation

Segment installation requires some form of electronic media (tape, CDROM, disk, etc.)
that contains the segments, and that has a table of contents which lists the available
segments. MakeInstall is the tool which creates such electronic media. However, it is
important to identify the operations (e.g., compression) performed on segments and the
sequence in which these operations are performed.

Installation requires reading the table of contents created by MakeInstall, selecting
the segments or Configuration Definitions to install, and then copying the segments to
disk. Segments may actively participate in the installation process through
PostInstall, PreInstall, and DEINSTALL scripts. This subsection details both
the MakeInstall tool and the installation sequence. At the end of this subsection,
detailed information on database creation and deinstallation is presented.

5.6.1 MakeInstall Flowchart

Figure 5-14 shows the sequence of operations performed by the MakeInstall tool.

1. MakeInstall is given a list of segments that are to be processed. For each
segment in the list:
a) If the segment is not already on disk, it is extracted from the repository and

placed in a temporary location.
b) A check is made to ensure that the segment is a valid segment.
c) If the segment is invalid, an error message is displayed. If the segment was

checked out of the repository and placed in a temporary location, the
temporary segment is deleted. MakeInstall then terminates.

2. If all segments are valid, a worklist is created. The worklist is sorted to ensure that

segments which have dependencies appear in the list after the segments they
depend upon. This ensures that at install time a tape will not have to be rewound
because of segment dependencies. Note that specification of an aggregate
automatically includes each child. The order in which child segments are placed
onto the distribution media is not guaranteed but is normally the order in which
they are specified by the parent segment.

3. For all segments in the worklist:

a) Prepare the segment by executing the segment’s PreMakeInst
descriptor if it exists. PreMakeInst is prevented from modifying the
segment’s SegDescrip. Otherwise, PreMakeInst could invalidate the
segment validation step above.

b) Unless the segment specifies otherwise, all segment subdirectories except
SegDescrip are compressed.

c) The compressed segment and its descriptor directory are written out to the
specified electronic media.

d) If the segment was extracted from the repository and placed in a temporary
location, the temporary segment is deleted.

Segment Installation

5- July 1997 DII COE I&RTS: Rev 3.05-114

FT

Order
Worklist

Abort

Start

For All
Segs Requested

Extract
Segment

Valid
Seg?

F

T

StopFor All
Segs in Worklist

Prepare Seg

Compress Seg

Write out Seg

Delete
Seg?

Delete Seg

F

T

Stop

Abort

Delete Seg

Issue Error
Message

Delete
Seg?

Figure 5-14: MakeInstall Flowchart

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 5-115

5.6.2 Installation Flowchart

Figure 5-15 is a detailed flowchart for the segment installation process. The sequence of
PreInstall, PostInstall, and DEINSTALL executions is the most significant
aspect of the flowchart. Directives contained in the Direct descriptor may affect the
sequence (e.g., use of $REBOOT and $ROOT keywords), but such details are omitted for
clarity. The installation software automatically removes patches when a segment is
replaced and deletes any temporary space ($TEMPSPACE keyword) allocated for the
segment. These details are also omitted for clarity.

1. A load device is selected (tape, disk, etc.) and the table of contents created by
MakeInstall is read.

2. Segments found in the table of contents which do not match the target platform are

removed from consideration. Similarly, a check is made to ensure that an operator
cannot inadvertently load a segment for which he is not authorized. The
environment variables MACHINE_CPU and MACHINE_OS are set to indicate the
hardware platform.

3. The media may have Configuration Definitions defined. If they are defined:

a) The operator may select a Configuration Definition to load.
b) If a custom installation is desired, the operator is presented with the table

of contents in which all segments in the selected Configuration Definition
are highlighted. The operator may add or delete segments from this list.

c) If Configuration Definitions are not defined, the operator is shown the table
of contents and must manually select the desired segments.

4. For all segments selected, a check is made to see if the segment is loadable. To be

loadable, all dependent segments must either be selected or already on disk.
Conflicting segments must not be selected, nor may they already have been loaded
on disk.

5. For all segments selected:

a) The installation tools determine where to load the segment. The
environment variable INSTALL_DIR is set to the absolute pathname to
where the segment will be loaded. Segments can not assume that any
environment variables other than MACHINE_CPU, MACHINE_OS,
SYSTEM_ROOT (for NT only), INSTALL_DIR, and those set to refer to
disk space (COE_TMPSPACE, DISK1, etc.) are defined.

b) If an old version of the segment already exists on disk, the old segment’s
DEINSTALL script is run.

c) The new segment’s PreInstall script is loaded and executed. Note that
the new segment is not yet on disk.

Segment Installation

5- July 1997 DII COE I&RTS: Rev 3.05-116

d) The old segment is deinstalled by the installation tools. Modifications made
through the descriptor files are reversed.

e) The old segment is deleted from disk.
f) The new segment is loaded from tape onto disk and decompressed if

necessary.
g) The installation tools process commands from the new segment’s

descriptor files.
h) The new segment’s PostInstall script is run. PostInstall may

invoke runtime tools described in Appendix C (e.g., to prompt the user).
i) A status message is displayed indicating whether or not the segment was

successfully installed.

6. If any of the segments installed requested a reboot, the operator is notified and

asked for confirmation. If the operator confirms, the system is rebooted.

5.6.3 Database Installation and Removal

Within the overall installation and removal flowchart presented in Figure 5-15, there are
some special considerations with regards to handling SHADE databases. Database
installation is described first, then database deinstallation.

5.6.3.1 Database Installation

This subsection describes the installation process flow and how the database segment
components work together to install a data store on the COE database server.
PostInstall, automatically invoked by COEInstaller, drives the actual
installation and creation of the database and its storage by executing the scripts residing
under the install directory of a database segment. The flowchart in Figure 5-16 depicts the
process logic of a PostInstall file with regards to database segments.

The DBMS should be operating in its maintenance mode (e.g. Oracle’s command
STARTUP DBA EXCLUSIVE) when a database segment or database patch segment is
installed. This prevents users from accessing data objects during their creation and
possibly corrupting either the segment or the database instance.

Table 5-8 shows, in broad outline, the sequence of steps performed by a database server
segment when it is creating the database. It uses Oracle and Sybase as examples. The first
three steps must be performed by a database account with DBA privileges. The owner
account (and there may be more than one) should be restricted so it can only create
objects in the data stores designated for its use. The remaining steps should be performed
by the owning account and should be done without DBA privileges. This ensures that data
objects are not inadvertently created in data stores belonging to other databases.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 5-117

N

Y

YN

Y N Error
Handler

Start

A

Reduce list by
H/W & Security

Config
Defs?

Start

Select Load Device

Read TOC & SegDescrips

Select Config Def

Customize?

Auto Select Manual Select

For All
Segs Selected

Loadable?

Stop

Reboot
if

Requested

For All
Segs Selected

Run old DEINSTALL

A

Run new PreInstall

Deinstall old Segment

Delete old Segment

Copy new Segment to disk

Decompress new Segment

Install new Segment

Run new PostInstall

Display Status Report

Figure 5-15: Installation Flowchart

Segment Installation

5- July 1997 DII COE I&RTS: Rev 3.05-118

N

Y

Is
Appropriate

DBMS
Instance

Running?

Start appropriate DBMS
instance in Maintenance Mode

Set up Installation
Environment

Start

Stop

COEPromptPasswd

Execute
Installation Script

COEStartDBServer

Figure 5-16: PostInstall Logic for DB Install

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 5-119

Function User Oracle SQL Command Sybase SQL Command

1. Allocate Storage DBA create tablespace ... datafile ... create database…

2. Create Owner DBA create user ...

3. Create Role(s) DBA create role ... create group …

4. Create Database Owner create schema create table …

5. Load Data Owner insert into table insert into table

6. Create Constraints Owner alter table … add constraint create constraint …

7. Grant Access Owner grant ... on table ... to role grant ... on table ... to group

8. Disconnect Owner DBA revoke CONNECT from ...

Table 5-8: Application Database Creation

1. Allocate Storage. This step is performed by the DBA and creates the physical storage
needed for the database. Developers shall not assume any particular disk configuration
when creating data files and shall create all files in the segment’s DBS_files
subdirectory. Developers may create multiple storage areas (e.g., Oracle tablespaces
or Sybase segments) to separate different groups of data objects. Developers shall not
modify the core database storage areas.

2. Create Database Owner. This step is performed by the DBA and creates the account

or accounts that will own the data objects. Their access will be limited to the storage
areas created by the segment and to public storage areas (e.g. Oracle tablespace TEMP
or USERS). Owners shall not have access to system storage areas (e.g. Oracle
tablespace SYSTEM). No permanent objects shall be created in public storage areas by
database segments. No objects shall be created in system storage areas. Owners shall
not have database administrator privileges.

3. Create Database Roles. This step is performed by the DBA and creates the database

roles necessary to manage user access. Developers should match the role definitions to
the access needed by applications. Developers should not grant privileges that allow
users to manipulate the data objects’ structure (e.g. Oracle’s Alter privilege). Users
should not be allowed to create their own indexes either.

4. Create Database. This step is performed by the Owner and creates tables, views,

indexes, constraints, sequences, and any other data objects that are part of the
database. If the developer has defined multiple owners, a separate script should be
provided for each one. No objects will be created that will be owned by the DBMS
default accounts (Oracle’s SYS or SYSTEM, Sybase’s sa) or by any other account
intended to be a DBA. Creation of constraints and indexes may be deferred to speed
the data load.

Segment Installation

5- July 1997 DII COE I&RTS: Rev 3.05-120

5. Load Data. This step is performed by the Owner and fills the data objects previously
created. Although index and constraint creation were defined as occurring in the
previous step, developers may defer them until the data load is complete to improve
performance.

6. Create Constraints. This step is performed by the Owner and creates any indexes,

constraints, triggers, or other objects that are part of the database but whose creation
was deferred until after the data load.

7. Assign Grants. This step is performed by the Owner and grants the appropriate

access permissions on data objects to the database roles previously defined. Grants
shall not be made directly to users accounts. Grants shall not be made to general
purpose users (e.g. Oracle’s PUBLIC user). Only the owner or the DBA are allowed
to administer grants. Other users will not be given permissions to further disseminate
grants.

8. Disconnect Owner. The last step – revoking database connection privileges from the

owner upon completion of the load process – is performed by the DBA. It ensures that
users cannot connect to the database as the owner of the data and thereby prevents
users from modifying schemas, indexes, or grants. Developers shall also require the
database administrators to change the password of the owner account upon
completion of the database creation.

The flowchart in Figure 5-17 depicts the processing logic of the install directory’s
scripts which drive the creation of the database objects. Each package install script
executes the database definition scripts that connect to the COE Database Server to create
database objects and perform other data definition functions.

The package install script executes database definition scripts that actually connect to
the COE DBMS Server to create the database objects and perform other data definition
functions.

5.6.3.2 Database Segment Deinstall

Deinstallation has a different flavor with databases. First, databases are dynamic. As users
make changes to their databases, sites’ data sets will diverge from each other. It is unlikely
that any two operational sites will have exactly the same data at any point in time. Second,
inter-database dependencies restrict the ability to remove segments in a modular way.

However, developers need to provide the capability to remove the application’s server
segment from the Database Server. This means removing the database and all traces of its
presence from within the DBMS and removing all files from the Database Server. The
following steps, at a minimum, must be accomplished. Note that the remove storage step
de-assigns the data files from the DBMS, it does not actually remove them from disk. The
last step, remove files, is executed from the operating system to delete the data files. Table
5-9 illustrates the logic required, using Oracle as an example.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 5-121

Create Database

Load Data

Assign Grants

Report Error

Disconnect Owner

Check Existence
of DB Scripts

Create Data Storage

Create Database Roles

Create Database Owner

Missing
Script?

Executed by DBA

Executed by DBO

N

Y

Executed by DBA

Figure 5-17: Install Scripts Logic

Function User Oracle SQL Command

Remove roles DBA drop role ...

Remove objects owner drop schema ...

Remove storage DBA drop tablespace ...

Remove owner DBA drop user ...

Remove files DBA N/A (Use OS commands)

Table 5-9: Application Database Deinstall

Segment Installation

5- July 1997 DII COE I&RTS: Rev 3.05-122

Within the Oracle server, combining the removal of storage and of data objects by using
the Oracle command ‘drop tablespace x including contents’ is not recommended because it
tends to overload the DBMS’ rollback segments. Developers should use the ‘drop
schema’ command followed by a ‘drop tablespace’ command instead.

When DEINSTALL is being executed to support a segment upgrade or patch, the upgrade
or patch must support the deinstall/reinstall of data and supply the scripts to do so.

DEINSTALL scripts must be set up to fail nondestructively if other database segments are
dependent on the segment to be deinstalled. This can usually be accomplished using the
COE Tool COELstDBDepends.

Partial Segmentation for COTS Products

DII COE I&RTS: Rev 3.0 July 1997 5-123

5.7 Partial Segmentation for COTS Products

The segmentation process has several benefits, including the ability to state dependencies
of one segment on another, which significantly simplify the installation process. From a
macro perspective, the segmentation process is a matter of creating the appropriate
segment descriptors to describe the segment and then running the MakeInstall tool to
package the segment along with its segment descriptors. However, there are situations in
which it is not convenient to physically repackage the application in order to put it into
segment format. This is particularly true with large COTS products which are distributed
on media such as CDROM or in a format provided by the vendor.

The DII COE provides a mechanism, called partial segmentation, which allows use of the
COTS vendor’s original distribution media and scheme while yet retaining the advantages
of using segment descriptors to specify dependencies, identify conflicts, etc. In concept,
the approach is to load a “pseudo-segment” which contains only the segment descriptors
and use the vendor’s installation process for the software itself. This allows the installation
tools to verify that sufficient space exists, that dependencies are met, and that conflicts are
resolved prior to loading the application.

Partial segmentation for COTS products requires that several actions be performed to
ensure that it works properly.

1. A “pseudo-segment” must be created. This is done by creating a directory with the
required segment descriptors which will give the segment a name, prefix, version
number, etc. This must be registered as is any other segment. The version number
for the “pseudo-segment” must include a primary version number that is used to
track changes in the pseudo-segment and a secondary version number that is the
COTS product’s version number as provided by the vendor.

2. A PreInstall descriptor must be created which checks to see if a correct

version of the COTS product is already installed. If it is not, the PreInstall
must notify the user that the COTS product must be installed before continuing
and then the PreInstall descriptor must return a failure status to the installer
tool. This requires the operator to use the vendor supplied instructions to install
the product before continuing.

3. Developers who use the partial segmentation process must certify in the Version

Description Document delivered to the government that the installation will fail if
the “wrong” version of the COTS product is installed. That is, if the pseudo-
segment has been produced for version 3.2.1 of a COTS product but the user
installs version 3.1.5 then this error must be detected by the PreInstall
descriptor and handled accordingly.

4. Developers who use the partial segmentation process must provide a copy of the

COTS product for testing and must make it clear how testers should process the
copy to make it ready for installation.

Partial Segmentation for COTS Products

5- July 1997 DII COE I&RTS: Rev 3.05-124

The tool COEScanCOTS described in Appendix C is a slight variation on the partial
segmentation process. It is specially designed for use in the NT environment where COTS
products may have already been installed on the platform prior to the installation of the
COE. This tool creates segment descriptor information for applications already installed
and thus allows segments loaded subsequently to state dependencies on COTS products
already installed.

Note: Partial segmentation is supported but it is not normally the
recommended approach for COTS products. Complete
segmentation allows one to take full advantage of the benefits of
the segmentation concept and process. Use of the partial
segmentation approach requires prior approval by the cognizant
DOD system engineer.

Security Considerations

DII COE I&RTS: Rev 3.0 July 1997 5-125

5.8 Security Considerations

COE-based systems typically operate in a classified environment. Therefore, the COE and
the segment developer both must address security considerations. This section describes
the security implications from a runtime environment perspective. It does not address
procedural issues such as proper labeling of electronic media, requirements for maintaining
paper trails showing originating authority, etc.

Certain restrictions described below are a result of how the operating system manages file
versus directory permissions. The most specific permission (i.e., on a file) does not
consistently override the least specific permission (i.e., on the file’s parent directory).

This section is evolving as security policies are developed for COE-based systems and as
legacy systems migrate to the COE. Further guidance will be issued as appropriate. Refer
to the DII COE Chief Engineer for specific security concerns or for guidance in segment
development beyond the information contained here.

5.8.1 Segment Packaging

Segments shall not mix classification levels within the same segment. It is permissible to
create an aggregate that contains segments that are at different classification levels, but the
parent segment must dominate the security level of any child segments.

Features that are not releasable to foreign nationals shall be clearly identified through
documents submitted to the cognizant DOD SSA when the segment is delivered. Software
and data that contain non-releasable features shall be constructed so that the features may
be removed as separate segments.

All classified data shall be constructed as separate segments. Developers shall submit
unclassified sample data to the SSA in a separate segment for the SSA to use during the
testing process.

5.8.2 Classification Identification

All segments shall identify the segment’s highest classification level in the Security
descriptor. Developers shall submit documentation to the SSA that clearly identifies what
features are classified and at what classification level.

5.8.3 Auditing

Segments that write audit information to the security audit log shall include the segment
prefix in the output. This is required so that audit information can be traced to a specific
segment.

Security Considerations

5- July 1997 DII COE I&RTS: Rev 3.05-126

5.8.4 Discretionary Access Controls

Developers shall construct their segments so that individual menu items and icons can be
profiled through use of COE profiling software. The profiling software allows a site
administrator to limit an individual operator’s access to segment functions by menu item
and by icon.

5.8.5 Command-Line Access

It is highly desirable for segments not to provide an xterm window or other access to a
command-line. Segment features should be designed and implemented in such a way that
operators are not required to interact with the application or operating system by entering
commands in a command-line environment. Operators should interact with applications
and the operating environment through graphical user interfaces.

Situations requiring superuser (i.e., root) command-line access shall require the operator
to log in as a normal user then use the su command (for UNIX) to become a superuser.
Superuser access by other means is not permitted unless the DII COE Chief Engineer
grants prior authorization. Permission will be granted only for COE-component segments.

Segments that provide command-line access shall audit entry to and exit from the
command-line access mode. Entry to command-line access mode shall require execution
of the system login process so that the user is required to enter a password. For example,
the UNIX command

xterm -exec login

will create an xterm window that requires the operator to provide a login account and
password.

Segments which require command-line access shall use the $CMDLINE keyword (and the
required $KEY keyword) in the Direct segment descriptor to document that the segment
provides command-line access. If the segment provides superuser privileges, the
$SUPERUSER keyword must also be stated in the Direct segment descriptor.

5.8.6 Privileged Processes

Segments shall minimize use of privileged processes (e.g., processes owned by root or
executed with an effective root user id). In all cases, privileged processes shall terminate
as soon as the task is completed. Privileged processes require prior Chief Engineer
approval.

(UNIX) The names of the privileged processes must be listed in the Processes segment
descriptor with the $PRIVILEGED keyword. The $KEY keyword must also be used to
indicate that authorization has been granted by the Chief Engineer.

(UNIX) Shell scripts that SUID or SGID to root are strictly forbidden.

Security Considerations

DII COE I&RTS: Rev 3.0 July 1997 5-127

5.8.7 Installation Considerations

Segments shall not require PostInstall, PreInstall, or DEINSTALL to run with
root privileges unless permission to do so is granted by the Chief Engineer.

Segments shall not alter the UNIX umask setting established by the COE.

5.8.8 File Permissions

Segments shall satisfy at least one of the following two requirements:

1. The segment contains only subdirectories directly underneath the segment’s home
directory. All files are at least one level down from the segment’s home directory.

2. The segment has no directories or files that have the equivalent of the UNIX 777 file

permissions.

This requirement is an attempt to provide a reasonable balance between security
requirements and migration of legacy systems. The main issue is that files and directories
should have read/write/execute permissions set for authorized, and only authorized, users.

Segments shall not place any temporary files in the directory pointed to by TMPDIR unless
deletion, alteration, or examination of such files by another segment or user poses no
security concerns.

5.8.9 Data Directories

Segments which contain data items with mixed permissions (e.g., some are read-only,
some are write only, some are read/write) shall be split into separate directories
underneath the segment’s data subdirectory (for reasons explained in section 5.8). File
permissions on the separate directories shall be set to prevent unauthorized access to data
files. No file shall be “world writeable” (i.e., writeable by any user) unless authorized by
the Chief Engineer.

Database Considerations

5- July 1997 DII COE I&RTS: Rev 3.05-128

5.9 Database Considerations

COE-based systems commonly make extensive use of databases. Database considerations
are therefore of paramount importance in properly architecting and building a system. This
section provides more detailed technical information on properly designing databases and
database applications.

5.9.1 Database Segmentation Principles

A COE database server is a COTS DBMS product. It is used in common by multiple
applications. It is a services segment and part of the COE. However, different sites need
varying combinations of applications and databases. As a result, databases associated with
applications cannot be included in the DBMS services segment. Instead, these component
databases are provided in a database segment established by the developer. The
applications themselves are in a software segment, also established by the developer, but
separate from the database segment. If the data fill for the database contains classified data
or is particularly large, that data fill must be in a separate data segment associated with the
database segment.

5.9.1.1 Database Segments

The DBMS is provided as one or more COTS segments. These segments contain the
DBMS executables, the core database configuration, database administration utilities,
DBMS network executables (both server and client), and development tools provided by
the DBMS vendor. Databases are provided as database segments. These segments contain
the executables and scripts to create a database and tools to load data into the database.

The following functional groupings are used to provide database services. The
configuration of COTS segments that provide them may vary depending on the DBMS
and the specific configuration chosen. The COTS segments will usually be provided as a
COTS DBMS server segment and a COTS DBMS client segment, installed on the
database server platform and on the client platforms, respectively. Specific
implementations of COTS DBMS segments are discussed in Appendix F.

1. DBMS Server. This functional group provides the DBMS executables, the DBMS’s
network services executables, and the core database. Its components are usually part
of the DBMS server segment.

2. DBMS Tools. This functional group provides the executables for other DBMS

applications (e.g. Oracle*Forms development tools). Its components are usually part
of the DBMS server segment.

3. DBMS DBA Tools. This functional group provides the executables for tools used by

database administrators (e.g. Oracle’s ServerManager). Its components are usually
part of the DBMS server segment, but may also be incorporated in the COTS DBMS
client segment.

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997 5-129

4. DBMS Client Services. This functional group provides the client network services for
the DBMS and runtime executables for other DBMS applications (e.g.
Oracle*Forms 4.0 runform executable). Its components are installed on the
network’s application server and on individual platforms.

The following specific segments are prepared by developers to provide databases within a
COE-based system configuration.

1. Application Database Segment. This database segment contains a database
belonging to a component application. It is installed on the database server.

2. Application Client Segment. This software segment contains applications that access

a database created by an Application Database Segment. It is installed on the
network’s application server or on individual platforms.

3. Application Database Data Segment. This data segment contains the data fill of a

component database when that data fill must be separated from the Application
Database Segment. It is installed on the database server.

5.9.1.2 Database Segmentation Responsibilities

Three groups are involved in the implementation of database segments: DISA, the
application developers, and the sites’ database administrators. The developers and DISA
work together to field databases and associated services for the DBAs to maintain. DISA
provides the DBMS as part of the COE. Developers provide the component databases.
Sites manage access and maintain the data. Users interact with the databases through
mission applications and may, depending on the application, be responsible for the
modification and maintenance of data in the databases.

5.9.1.2.1 DISA

DISA or the cognizant DOD Program Office provides the core database environment in
which the applications’ database segments will be integrated. The basic functionality
provided with that core environment gets the database server ready for developers to add
their databases and for the sites’ database administrators to add and administer users.

The initial database contains the data dictionary, system workspace and recovery storage,
storage for the database component of any vendor tools, and an initial allocation of user
workspace and temporary storage. The application servers and client platforms are set up
with the DBMS client environment so that users need only execute the environment shell
script to be able to connect to the server. Finally, the initial operating system and DBMS
accounts are established on the database server for the sites’ database administrators.

Database Considerations

5- July 1997 DII COE I&RTS: Rev 3.05-130

5.9.1.2.2 Developers

Developers are responsible for providing everything associated with their application’s
database. Developers must define the owner account(s) for their base data objects. They
must define and create the data objects within those owner accounts. Aside from the data
proper, developers must determine and define the access levels and privileges that must
exist for their segment’s database. Database roles must be used to implement the users’
access controls to ease the maintenance burden on the DBA.

· Developers may implement specific auditing within their applications and databases,
but shall not modify the system’s security audits.

· Developers shall provide scripts for the DBA’s use to add, modify and remove user

privileges.

5.9.1.2.3 Database Administrators

The System and Database Administrators at each site are responsible for creating,
modifying, and removing users’ DBMS and UNIX accounts using COE Tools. For
security and ease of management, a “unitary login” or single account name for each user
for both the operating system and the DBMS is being adopted for COE-based system.
This means that users cannot use DBMS accounts defined by developers and that
developers cannot assume the existence of any particular user accounts except for
accounts created by the developer to support DBMS services. It also means, as required
by the system Security Policy, that database actions can be traced to the individual user.
Security auditing is the responsibility of the sites’ DBAs. They are implemented as each
site needs using the audit features provided by the DBMS.

A DBA creates users’ DBMS accounts as part of the process of granting users access to
applications and their associated databases. COE Tools are used to accomplish this. In
order for these tools and the grants process to work properly and smoothly, the
developers must provide procedures, scripts, and instructions for the DBA’s use. Users’
access will change over time and few users will have access to all applications. The
developers’ procedures must support the addition of users and the revocation of users’
privileges. Since those privileges correspond to applications or sets of applications,
separate procedure scripts must be provided for each application or set. If an application
has multiple levels of privileges, then multiple procedures must be provided.

5.9.1.3 DBMS Tuning and Customization

The core database server segment(s) is (are) configured and tuned by the organization
responsible for it (e.g., DISA, GCCS, GCSS) based on the combined requirements19 of all
developers’ databases (within the program or DOD wide) taken together. Developers
provide these requirements during Segment Registration. This allows the DBMS Server

19 An implication of this statement is that the combined requirements may lead to the need to develop a
multiple instance database server segment.

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997 5-131

segments to be reasonably independent of particular hardware configurations and ignorant
of specific application sets. It is not tuned or optimized beyond that.

The final tuning of the DBMS cannot be accomplished until a complete configuration is
built and it has an operational load. Developers should provide information into the tuning
process, but should not make their applications dependent on particular tuning parameters.
Where a non-standard parameter is required for operations, developers must provide that
information to DISA so the DBMS services segment can be modified accordingly.

The developers need to communicate any design assumptions and DBMS configuration
requirements that must be incorporated in the DBMS set-up. If, for example, developers
need any settings in the Oracle initDII.ora file that are not the default settings for the
current data server segment used in the currently available data server segment, that
information needs to be provided to the DII COE Chief Engineer or responsible Program
Chief Engineer early in the integration process for a forthcoming release. Based on the
impact of the change, DISA or the responsible Program Office can decide to modify the
baseline server configuration or to develop a database server patch segment to accompany
the application’s database segment and modify the in-place database server segment.

Similarly, sizing of system recovery logs, log archiving directories, and users temporary
workspace is based on the combination of the requirements of the various applications that
use DBMS services. Developers must communicate their minimum requirements for these
so that the core DBMS is not set to be too small. Most of the application tools provided
by DBMS vendors are incorporated in the DBMS segment in the functional category of
Server Tools. To ensure that needed tools are available, developers should advise the
Chief Engineer what COTS tools they intend to use when registering the segment. When
such tools are used, the developer must identify the dependency under the database
application segment’s Requires descriptor.

· Developers shall not modify the core DBMS instance’s configuration. Extensions or
modifications of that configuration require the specific approval of the DII COE Chief
Engineer and will be implemented by DISA in the COTS DBMS segment.

· If developers modify any of the executable tools (e.g. add User Exits to
Oracle*Forms), then the modified version of the tool does not reside with the core
database services, but becomes a part of the application’s client segment. This
prevents conflicts among different modified versions of a core function. The
maintenance of that modified tool also becomes the responsibility of the developers.

5.9.2 Database Inter-Segment Dependencies

A key objective of the segmentation approach is to limit the interdependencies among
segments. Ideally, database segments should not create data objects in any other schema
or own data objects that are dependent on other schemas. However, one purpose in
having a Database Server is to limit data redundancy and provide common shared data
sets. This means that there will usually be some dependencies among the databases in the
federation. This section addresses the management of such dependencies.

Database Considerations

5- July 1997 DII COE I&RTS: Rev 3.05-132

The following principles apply when inter-database dependencies exist:

· The database schema within a segment that will own the parent object will create that
object.

· The database schema within a segment that will own the child (dependent) object will
create that object.

· Database schemas with inter-database dependencies will strive to keep those
dependencies in segments separate from the non-dependent portions of the schema.

· The referencing object, not the one that is referenced, owns referential dependencies
(e.g. foreign keys). If the only dependencies are referential, separate segments are not
needed.

· Schemas retain their autonomy. The developer of a dependency (including referential
dependencies) is responsible for maintaining that dependency should other developers
change their database schemas.

The following are general requirements for database segments.

· Application Database Segments shall not make modifications to another segment’s
application database. If a schema in an application database needs to create data
objects in some schema belonging to another application database segment, those
objects will be placed in the application database segment that owns those schema
objects. Developers shall not create indexes on another application database segment’s
tables because of the performance problems they can cause.

· Developers will not modify the schema of another segment’s database. If changes to

table or column definitions are needed, they must be effected by the developer of the
database.

· When dependencies exist they will be documented under the Requires descriptor of

the SegInfo file. Object dependencies will be document under the Database
descriptor of the SegInfo file.

The following example illustrates (see Figure 5-18) how dependencies are to be created
and managed. The developers of database B need to attach a trigger to a table in database
A. This trigger will feed data from A to B every time that table is modified. Rather than
include the trigger as part of B’s Database Segment, it is put into a separate Database
Segment C, that modifies Database Segment A. C, the inter-database segment, is
dependent on the prior installation of both database segments and is so labeled under its
Requires descriptor. The table is listed in the $MODIFIES section of the Database
descriptor.

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997 5-133

Database Segment A
created by

Developer A

Database Segment C
created by

Developer B
(dependent on A and B)

Database Segment B
created by

Developer B

Segment dependencies are listed in the Requires descriptor
Object dependencies are listed in the Database descriptor

Figure 5-18: Inter-Database Dependencies

5.9.3 Loading Data into Database Segments

After the objects belonging to a Database Segment have been created in PostInstall,
they may need to be populated. Other objects, those containing dynamic data, may be
initially empty. Where needed, a database segment can perform initial data fill in the Load
Data phase of the PostInstall. Several methods are discussed below that can be used
to accomplish data loads. Method selection should be based on the amount of data to be
loaded.

If a small number of records are to be loaded into a table, the load can be accomplished
with insert statements embedded in an SQL command script. The following excerpt is an
example for loading data into Oracle.

Database Considerations

5- July 1997 DII COE I&RTS: Rev 3.05-134

sqlplus -silent DBSORT/${DBO_PWD} <<eof
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00001’,’U’,sysdate,’U’);
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00002’,’U’,sysdate,’U’);
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00003’,’U’,sysdate,’U’);
eof
;;

If a large amount of data is to be loaded into a database table, the use of a data loading
utility furnished by the RDBMS is usually more efficient. In this case, the utility can be
invoked from the LOAD_DATA section of the database definition script. Examples of
these data loading utilities are Oracle SQL*Loader, Informix dbload, Oracle or Informix
Import, and Sybase bcp. These utilities require that the data to be loaded be stored in a file
with a specific format.

Files used for data fill belong in the data subdirectory of the database segment. The data
directory within the segment can also be used as a ‘mount point’ for CDROM, tape drive,
or other bulk storage devices. This is the preferred approach for large data loads. It allows
the segment to be filled without occupying disk space during the data fill.

The security classification of the data to be loaded must be considered during the
implementation of a database segment. When a classified data fill is part of the database
segment, the entire segment becomes classified at the same level as the data. Therefore,
developers must separate the data fill from the database segment when the database
schema is not classified, but the contents are. The intent here is to keep database segments
unclassified as much as possible so schemas can be reused. The security classification of a
DII COE system (e.g. GCSS) is a separate issue and is addressed in the security policy of
that system’s program office.

If a separate data segment is provided to accompany a database segment, that data
segment must have a DEINSTALL capability. This frees storage after the data fill is
complete.

It can take a long time to fill a large database. Developers should indicate the approximate
load time in their ReleaseNotes. The data load time can be reduced by loading the
data before creating the database constraints and indexes. Estimating the load time should
only be done with clean data that has been tested against the database constraints.

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997 5-135

5.10 Tailoring the COE

Most properly designed segments will not require any extensions to the COE, except for
the need to add icons and menu items. This subsection describes some of the more
commonly required extensions, and techniques for addressing less frequently encountered
extensions.

5.10.1 Adding Menu Items to the Desktop

Adding menu items is usually required only when installing a software segment. Two
pieces of information are required: the name of the affected account group(s) and the
menu items to add. Refer to the SegName and Menus descriptors.

The installation software appends the contents of the segment’s menu files to the
corresponding menu files in the affected account group(s). This forms a master template in
the affected account group’s data/Menus subdirectory that is subsequently used to
create operator profiles. Segments should use the APPEND directive in the menu files to
add items. Refer to the Executive Manager Programmer’s Guide in the Developer’s
Toolkit documentation for the format of menu files.

Previous COE releases included a system menu bar that was displayed at the top of the
screen, just below a security banner. The COE no longer automatically provides a system
menu bar. Segments that require a system menu bar must use the Executive Manager APIs
to explicitly add menu items when the application initializes. Developers may only add
menu items that are contained within the current user’s profile. The APIs are constructed
to prevent addition of menu items to the system menu bar that are not contained in the
current user profile.

Segments that use a system menu bar must also use the APIs to remove their system menu
bar additions when the application terminates. Refer to the User Interface Specification
for guidance on when it is appropriate to use a system menu bar versus desktop icons.

5.10.2 Adding Icons to the Desktop

As with menus, adding icons is usually required only for software segments. Two pieces of
information are required: the name of the affected account group and the icons to add.
Refer to the SegName and Icons descriptors above.

The installation software appends the contents of the segment’s icon files to a master list
located with affected account group(s). This forms a master template in the affected
account group’s data/Icons subdirectory that is subsequently used to create operator
profiles. Refer to the Executive Manager API documentation for the format of icon files.

Refer to the User Interface Specification for guidance on when it is appropriate to use a
system menu bar versus desktop icons.

Tailoring the COE

5- July 1997 DII COE I&RTS: Rev 3.05-136

5.10.3 Modifying Window Behavior (UNIX)

The User Interface Specification defines required window behavior for all segments.
X Windows controls window behavior through a collection of resource definitions. The
resource definitions consulted are as follows (if they exist):

1. Files located in the directory /usr/lib/X11/app-defaults.
2. Files in the directory pointed to by XAPPLRESDIR.
3. Resources inherited from the display’s root window.
4. The file $HOME/.Xdefaults.
5. The file pointed to by XENVIRONMENT.

X Windows processes the controls in the order shown, and in such a way that the last
control specified overrides any preceding controls.

The COE must carefully control resources to avoid conflicts between segments.
Therefore, segments shall not place files in directories “owned” by X Windows (e.g.,
/usr/lib/X11/app-defaults.) Instead, segments shall place their resources in the
subdirectory data/app-defaults underneath the segment directory as shown in
Figure 5-2. At install time, the installation tools create a symbolic link underneath
$DATA_DIR/app-defaults to each of the files contained in the segment. For this
reason, segments must use their segment prefix to name all app-defaults used in this
manner.

Figure 5-2 also shows that segments may place additional fonts underneath the segment’s
data/fonts subdirectory. At install time, the installation tools create a symbolic link
underneath $DATA_DIR/fonts to point to each of these files. Segments shall use their
segment prefix to name font files used in this way.

The COE establishes the setting for environment variables XFONTSDIR,
XAPPLRESDIR, and XENVIRONMENT. Segments shall not modify their value. They are
set as defined in subsection 5.3.

Motif follows a similar strategy for setting resources. The COE uses the Motif software
provided with CDE software. Refer to the Developer’s Toolkit documentation for more
details on how Motif operates within the CDE environment.

Segments may not place files in any directory “owned” by Motif (e.g.,
/usr/lib/X11/app-defaults/Mwm) or CDE, nor may segments alter the account
group’s .mwmrc resource file, if it exists.

To summarize, for DII compliance:

· Segments shall not modify vendor distributed X Windows, Motif, or CDE system
resources (Xdefaults, rgb.txt, etc.).

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997 5-137

· Segments shall not place files in the X, Motif, or CDE distribution directories (e.g.,
/usr/lib/X11/app-defaults).

· Segments shall use the segment prefix to uniquely name files underneath the segment’s

data/fonts and data/app-defaults subdirectories.

· Segments shall not modify the COE established setting for XAPPLRESDIR,

XENVIRONMENT, or XFONTSDIR.

· Segments shall not modify the affected account group’s .mwmrc file, if one exists.

5.10.4 Using Environment Extension Files (UNIX)

The ReqrdScripts descriptor allows extensions to the affected account group’s “dot”
files (.cshrc, .login, etc.). This is most frequently done to add environment variables.
However, unregulated use of environment variables is detrimental to the system. The
amount of space the operating system reserves for environment variables is limited and
loading a large number of segments could quickly exhaust this scare resource. Each time a
process is spawned, the child process inherits environment variables from the parent.
Resolving a large number of environment variables can take a significant amount of time
and hence degrade system performance.

DII compliance requires adherence to the following guidelines:

· Do not include development environment variables in runtime environment scripts or
extension files.

· Use “short names” for environment variables. UNIX stores environment variable

names as character strings in the environment space, so the longer the variable name,
the faster environment variable space is exhausted.

· Reuse environment variables already defined by the COE or affected account group.

· When feasible and efficient, use operating system services (such as pipes and streams)

or data files to communicate with other segments, or between components within the
same segment.

· Do not use environment variables to communicate control data between components

within the same segment. Use operating system services or data files.

· Do not define environment variables that can be derived from other environment

variables. For example, to define MYSEG_BIN through

 setenv MYSEG_HOME /h/MySeg
 setenv MYSEG_BIN $MYSEG_HOME/bin

Tailoring the COE

5- July 1997 DII COE I&RTS: Rev 3.05-138

 wastes environment variable space. The COE guarantees a predictable directory
structure, so $MYSEG_HOME/bin can be used directly instead of $MYSEG_BIN.

· When feasible, have segment components create environment variables once they

begin executing through putenv or through “sourcing” a file containing needed
environment variables. This approach ensures that segment-specific environment
variables are inherited locally by a single segment, not globally by all segments.

5.10.5 Using Community Files

Community files are any files that reside outside a segment’s assigned directory. (Data
files owned by the segment underneath /h/data are considered an exception.) Most
required community file modifications are handled automatically by the installation
software through descriptor directory files. The Community descriptor is used when the
installation software cannot provide the modifications required.

All community file modifications are carefully scrutinized at integration time because of
the potential for conflict with other segments or the runtime environment. Developers
should seek guidance from the Chief Engineer before modifying any COTS community
files (those owned by UNIX, X Windows, Motif, Oracle, Sybase, etc.).

5.10.6 Defining Background Processes

When an operator logs in, the operating system uses various files to establish a runtime
environment context. Segments use the Processes descriptor to add other background
processes to the runtime environment.

The COE differentiates between eight different types of processes:

Boot Processes launched each time the computer is booted or rebooted.
Designate boot processes with the $BOOT keyword.

DCE Boot DCE processes launched each time the computer is booted or
rebooted. Designate DCE boot processes with the $DCEBOOT
keyword.

RunOnce Processes launched the next time the computer is rebooted. These
are “one-shot” processes and are only run the next time the
computer is rebooted, but not for reboots thereafter. Designate
RunOnce processes with the $RUN_ONCE keyword.

Periodic Processes launched at boot time that automatically run periodically
at specified intervals (e.g., 6 hrs, 24 hrs) with no other user actions
required to initiate the process. These processes are equivalent to
UNIX cron process. Use the $PERIODIC keyword to indicate
these types of processes.

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997 5-139

Privileged Processes that require “superuser” privileges to execute. Use the
$PRIVILEGED keyword to indicate these type of processes.

Background Processes launched the first time an operator logs in after a reboot;
these processes remain active in the background even after the
operator logs out. Designate background process with the
$BACKGROUND keyword.

Session Processes launched when an operator logs in and remaining active
only while the operator is logged in. Designate session processes
with the $SESSION keyword.

Transient Processes launched in response to operator selections from an icon
or menu. Transient processes typically display a window on the
screen, perform some specific function in response to operator
actions, and then terminate. In some cases, the processes spawned
may stay active for the length of the session, but in all cases, the
Executive Manager terminates transient processes when the
operator logs out. Designate transient processes through the
Menus and Icons descriptors.

Note: Because of the potential impact to other segments, system
performance, and system integrity, all processes except Session,
and Transient processes require prior approval by the Chief
Engineer. Boot, DCE Boot, privileged, and periodic processes
are strongly discouraged.

5.10.7 Reserving Disk Space

Segments frequently require additional disk space to accommodate growth over time as
the system operates. For example, communications logs are empty when the system is
initially installed, but will occupy space as messages are received and logged. Segments
may reserve additional disk space through the Hardware descriptor.

The installation software keeps track of how much disk space is actually in use and how
much is reserved. A segment will not be installed if the amount of space it occupies, plus
any space it reserves, exceeds the amount of unreserved disk space. The installation
software allows the operator to select how full the disk can be (80, 85, 90, or 95% of
capacity). These safeguards are in place to avoid filling up the disk, but segments are
responsible for detecting when the amount of space requested is not available.

In rare situations, segments may require space on multiple disk partitions. See the
$PARTITIONS keyword for the Hardware descriptor.

Tailoring the COE

5- July 1997 DII COE I&RTS: Rev 3.05-140

5.10.8 Using Temporary Disk Space

Segments may require temporary disk space during segment installation and during system
operation. The COE provides techniques for accommodating both uses for temporary
space.

Temporary disk space may be requested during segment installation through the
$TEMPSPACE keyword in the Hardware descriptor. The installation software sets the
COE_TMPSPACE environment variable to point to the location where temporary space is
allocated. This environment variable is defined only during segment installation. The
installation software automatically deletes all files in this temporary area when segment
installation is completed.

The environment variable TMPDIR points to a temporary directory that may be used
during system operation. However, there is a limited amount of disk space set aside for
temporary storage so it must be used sparingly. A better approach is for segments to store
temporary data in their own data subdirectory.

Segments that use TMPDIR must delete temporary files when they are no longer required.
For UNIX systems, all files in this directory are automatically deleted when the system is
rebooted. This is not true for NT platforms. All segments, as a matter of good
programming practices, should delete temporary files when they are no longer needed.

5.10.9 Defining Sockets

Requests to modify the /etc/services file to add sockets is done through the
COEServices descriptor. This control point for requests to add socket names and ports
helps avoid conflicts between segments. Port numbers in the range 2000-2999 are
reserved for COE segments. Segments should avoid creating sockets with port numbers
less than 1000 since these are generally reserved for operating system usage.

Miscellaneous Topics

DII COE I&RTS: Rev 3.0 July 1997 5-141

5.11 Miscellaneous Topics

This subsection discusses a variety of miscellaneous topics that are related to
segmentation, use of the DII COE, etc.

5.11.1 Color Table Usage

The COE must carefully control how the color table is used to avoid objectionable “false
color” patterns that may appear when mouse focus changes from one window to another.
The User Interface Specification gives guidance on what colors to use from a human
factors perspective, but it does not provide guidance on how segments are to coordinate
such usage through the COE.

This document will be expanded to include guidance for color table usage as the impact of
COTS products and legacy applications is evaluated.

5.11.2 Shared Libraries

The COE strongly encourages the use of shared libraries to reduce memory requirements.
Developers may create shared libraries (DLLs for NT platforms) through use of the
SharedFile segment descriptor.

(UNIX) Developers should also link to X and Motif shared libraries to reduce memory
requirements. The Motif libraries provided by CDE should be used instead of the libraries
provided by Motif or some other source. This alleviates the need to maintain Motif shared
libraries used both by the desktop (e.g., CDE) and other applications.

5.11.3 Adding Network Host Table Entries

Platform IP addresses and hostnames are site-dependent. Hostnames in particular are most
often selected by the site and usually cannot be predicted in advance. Therefore, segments
shall not include any assumptions about a platform having a specific name or following any
particular naming convention, nor make any assumptions about a specific IP address class.

Segments should rarely need to add entries to the network host table. An operator usually
establishes such entries through system administration functions. For those situations
where a segment must do so, the $HOSTS keyword in the Network descriptor allows IP
addresses, hostnames, and aliases to be added to the network host table. The address may
be added to either the local host table, or to the DNS/NIS/NIS+ maintained host table.

Prior permission must be given by the DII COE Chief Engineer to use the $HOSTS
keyword, and permission will be granted only for COE-component segments.
VerifySeg will issue a warning for any segment which uses the $HOSTS keyword, and
a warning if the segment does not include the $KEY keyword. A future release will issue
an error if the segment does not provide a valid authorization key.

Miscellaneous Topics

5- July 1997 DII COE I&RTS: Rev 3.05-142

5.11.4 Registering Servers

Servers are registered with the COE through the $SERVERS keyword in the Network
descriptor. Only COE-component segments may register servers. Prior permission must be
given by the DII COE Chief Engineer to use the $SERVERS keyword. VerifySeg will
issue a warning for any segment which uses the $SERVERS keyword and strictly fail the
segment if it is not a COE-component segment.

A segment that needs to determine the location of a server may use the
COEFindServer function (see Appendix C).

5.11.5 Adding and Deleting User Accounts

Segments are not normally allowed to create operator accounts (e.g., UNIX user login
accounts). Segments may create system accounts, through the COEServices descriptor,
for the purpose of establishing file ownership. Operator accounts are normally added to
the system through use of the Security Administrator application. They are customizable
by security classification level, by access permissions granted or denied against application
objects, and by granting or denying access to menu or icon items. The segment descriptors
AcctGroup, Security, Permissions, Menus, and Icons provide these controls.

Figure 5-3 shows that operator accounts may be global or local. This attribute is specified
when the operator account is created. If the server that contains operator accounts is
down, global operator logins will be unavailable until the server is restored.

Profiles may also be global or local. This attribute is determined when the profile is
created. If a global profile is not available at login time (e.g., the server is down), login
proceeds but the operator is notified of the problem and the system is placed in a safe
state.

Some segments require the ability to perform additional operations when a user account is
created, or to perform cleanup operations when a user account is deleted. This is done by
using the $ACCTADD and $ACCTDEL keywords in the Direct descriptor. Moreover,
the $PROFADD, $PROFDEL, and $PROFSWITCH can be used to perform segment-
dependent operations when user profiles are created or deleted, or when a user switches
from one profile to another. Due to security implications, these keywords require prior
permission from the Chief Engineer and use of the $KEY keyword.

5.11.6 Character-Based Applications

Support for character-based interfaces is provided through the CharIF account group.
An account is established for individual users through the same process as all other
accounts, but the account is identified as a character-based interface account only.
Operator profiles may be set up, but only those segments that support a character-based
interface (see the Direct descriptor) are accessible.

Miscellaneous Topics

DII COE I&RTS: Rev 3.0 July 1997 5-143

The remote user connects to the designated server through a remote login session. Once
connected, the user is prompted for a login account and password. A menu of options,
such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:

is presented to the user. The option selected is executed and results are displayed on the
user’s remote, character-based display.

5.11.7 License Management

The COE contains a license manager to administer COTS licenses. Vendors take a variety
of approaches in how they control and administer licenses. For this reason, the techniques
for automating license management are still under development and are being handled
manually. Refer to the DII COE Chief Engineer for further assistance in creating a
segment that requires a license manager.

Developers should include the COTS vendor’s version number as the secondary version
number as described in Chapter 2. This will facilitate automated license management.

5.11.8 Remote versus Local Segment Execution

Segments which are remotely launchable are designated by the $REMOTE keyword in the
Direct descriptor. This feature is not currently implemented, but is reserved for future
implementation. Developers are encouraged to use the $REMOTE keyword and design
their segments to account for local versus remote execution. Thus, when this feature is
fully implemented, developer segments will be positioned to take advantage of the
capability.

5.11.9 Modifying Network Configuration Files

Setting up a network requires modification of several network configuration files to set
netmasks, identify subnets and routers, etc. Proper network configuration is essential for
proper system operation and performance. For this reason, only COE-component
segments may establish network configuration parameters. This is accomplished through
the Network descriptor.

Prior approval from the DII COE Chief Engineer is required. VerifySeg will issue a
warning for any segment that uses the Network descriptor and strictly fail the segment if
it is not a COE-component segment. Note that the $KEY keyword must also be specified
to give a valid authorization key.

Miscellaneous Topics

5- July 1997 DII COE I&RTS: Rev 3.05-144

5.11.10 Establishing NFS Mount Points

NFS mount points are defined through the $MOUNT keyword in the Network descriptor.
Establishing mounted file systems can seriously degrade system performance. Poor design
choices that result in several different mount points can create single points of failure, or
result in sequencing problems when the system is loaded or rebooted. For these reasons
the DII COE Chief Engineer must approve mount points for COE-component segments.
The cognizant Chief Engineer must approve mount points for mission application
segments.

VerifySeg will issue a warning for any segment which uses the $MOUNT keyword. It
will strictly fail any COE-component segment that does not specify the $KEY keyword.

PC-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 6-1

6. PC-Based Applications

This chapter describes the DII COE features that are available for PC platforms. The
present DII COE supports PC Windows NT1 only. The COE concept is not specific to
UNIX, or NT, or any other operating system or windowing environment. However,
certain adjustments to COE implementation details are required to support differences
between the PC-based NT environment (use of ‘\’ versus ‘/’ in naming directories, byte
swapping, etc.) and UNIX, as well as to take advantage of features offered in the NT
environment (e.g., registry).

The extensions described in this chapter to accommodate NT are not platform-dependent
(e.g., limited to 80x86 PCs). Commercial industry has implemented the Microsoft NT
operating system on selected other platforms (e.g., DEC), but such platforms are not
presently in wide use in the DII community. COE support for NT on platforms other than
PCs will be considered when they are in widespread use in the DII community.
Throughout this version of the I&RTS, NT and PC may be used interchangeably with the
understanding that NT is not limited to PC platforms.

1 Windows 3.1 and Windows for Workgroups 3.11 are not supported. Windows 95 is not presently a
supported platform because of known security problems within the operating system. When the security
problems are resolved, Windows 95 may be added to the list of supported platforms.

Disk Directory Structure

6-2 July 1997 DII COE I&RTS: Rev 3.0

6.1 Disk Directory Structure

The NT-based COE uses the same basic directory structure shown in related figures from
Chapter 5. However, Intel-based computers store data bytes in a different order than other
processors. This makes data sharing via disk more difficult. This section describes the
COE disk directory extensions required to support PCs.

Basic Directory Structure

The logical directory structure shown in Chapter 5 is preserved for PCs. On the primary
disk drive, subdirectory \h is created at the root level with subdirectories COTS,
AcctGrps, COE, data, etc. Unless overridden by the installer, the installation software
will attempt to put segments on the primary disk drive first. If it cannot do so, it will load
the segment on the next available hard disk. The environment variable INSTALL_DIR is
set to point to where the segment was loaded at install time, just as for UNIX platforms,
and includes the disk drive designation in the pathname.

Segment Directory Structure

A Scripts subdirectory is optional for NT segments because environment extension
files are not supported, nor are they needed. Account group segments that need to
establish global environment settings shall do so by entering required settings in the
registry. Segments that need to establish local environment settings may do so through a
.INI file that shall be located in the segment’s data\INI subdirectory. All of a
segment’s private INI files shall be stored in the segment’s data\INI subdirectory.

NT segments shall place all executables in the bin subdirectory. Segments that contain
dynamic link libraries (DLL files) shall place them in the bin subdirectory. Except for
COTS segments, segments are not allowed to load DLL files in any other subdirectory.

USERS Directory Structure

The NT COE uses the same operator directory structure as the UNIX COE, as described
in Chapter 5. Local operator accounts are specific to a single NT platform, while global
operator accounts are accessible from any NT PC on the network. However, operator
accounts may not be mixed between UNIX and NT platforms. Thus, an operator account,
whether global or local, is either an NT operator account or a UNIX operator account,
but never both.

Global operator account subdirectories (e.g., \h\USERS\global) are physically
located on an NT designated as the server. This directory is made accessible to other PCs
on the network through the share command.

Environment variables USER_HOME, USER_DATA, and USER_PROFILE are set by the
appropriate account group and have the meaning described in Chapter 5. They are
provided for backwards compatibility and should not be used in the NT-based COE. As

Disk Directory Structure

DII COE I&RTS: Rev 3.0 July 1997 6-3

with UNIX applications, segments shall use a Preferences API to locate user-related data.
This is because data may ultimately be moved to the registry or reside in different
locations depending upon the NT configuration (e.g., workgroups versus domains). By
using the Preferences APIs, the developer can assure future compatibility.

Data Directory Structure

Chapter 5 defines data in terms of data scope. Local data is stored underneath
\h\data\local while global data is stored underneath \h\data\global. Because
data stored on the PC is not directly compatible with UNIX platforms, an additional data
subdirectory is created for storing PC only global data. This is the subdirectory
\h\data\PCglobal. Segments shall follow the same rules for this directory as for the
\h\data\global directory, except that only PC segments are allowed to access it.
This subdirectory is physically located on a PC designated as the server and made
accessible to other PC platforms on the network.

Like global data, PCglobal data is shared between platforms. However, PCglobal
data (and local data on PC platforms) is stored in native PC-byte order and can only be
shared among PCs. PCs may also access data stored in the \h\data\global
subdirectory. However, this directory is always physically located on a UNIX machine
designated as a server. PC segments shall read and write data in the \h\data\global
directory in network byte order. PC segments shall read and write data in the
\h\data\local and \h\data\PCglobal directories in native PC byte order.

Miscellaneous

1. Segments shall use file extensions that correspond to conventional Windows usage.
That is, use .EXE for executables, .DLL for dynamic link libraries, .TXT for ASCII
text files, etc. Note this means that NT segment descriptor files should use the .TXT
extension,2 but shall use the .BAT or .CMD (for batch3 files), or .EXE (for compiled
programs) extension for PostInstall, DEINSTALL, PreInstall, and
PreMakeInst.

2. Segments, excepting COTS segments and in some cases shared DLLs, shall not set the

Windows path environment variable. If the segment provides shared DLLs for use by
other software, and if there is no alternative way for that software to locate the DLLs,
the segment may add a directory to the path for those DLLs.

2 For backwards compatibility, NT segments may omit the .TXT extension. However, this is strongly
discouraged. The segment must be consistent in either always using the .TXT extension or never using it.
VerifySeg will strictly fail a segment that does not follow this convention. Otherwise it will be
confusing and unclear which descriptor takes precedence when a segment includes the same segment
descriptor, once with the .TXT extension and once without it.
3 Developers should avoid the use of batch files and use executables whenever possible. Batch files, in PC
NT, will cause a command shell window to pop up while the batch file is running.

Disk Directory Structure

6-4 July 1997 DII COE I&RTS: Rev 3.0

3. Segments shall use the standard Windows APIs to locate a directory for temporary
disk storage. This corresponds to using /tmp in UNIX. Segments shall delete
temporary files when an application terminates. Unlike the UNIX-based COE, the NT-
based COE does not automatically delete files in the Windows temporary directory
when the computer is rebooted. This is in keeping with current commercial usage of
the Windows temporary directory.

4. Segments shall not add a global “home” environment variable to the affected account

group.

5. Environment extension files are neither supported nor required in the NT-based COE.

6. app-defaults subdirectories are not meaningful in the NT-based COE. Special

handling of fonts (i.e., a fonts subdirectory) is not currently supported in the NT-
based COE, but may be in the future. NT segments should not include either of these
subdirectories. If they are included with a segment, the installation tools will not do
any special processing for these subdirectories as they do for the UNIX-based COE.

Account Groups

DII COE I&RTS: Rev 3.0 July 1997 6-5

6.2 Account Groups

Account groups in the NT-based COE correspond to Windows Program Groups. The
present NT COE does not include the CharIF or DBAdm account groups.

When the COE is loaded, the installation tools create program groups SecAdm and
SysAdm. The program items in each program group are determined as segments are
loaded. Some program items, specifically for SecAdm and SysAdm, are provided by
native Windows software and therefore will also be found in other program groups
provided by Windows. This is done by creating duplicate icons that point to the same
executable, not by creating multiple copies of the software.

As with the UNIX COE, the specific icons and program groups available to an operator
depend upon the operator profile.

Registry Usage

6-6 July 1997 DII COE I&RTS: Rev 3.0

6.3 Registry Usage

Microsoft Windows programs have traditionally created “INI” files to store configuration
information. Windows 95 and Windows NT use a registry4 instead to store hardware
parameters, configuration data, and Windows-maintained operator preferences. The
registry is structured as a hierarchical database of keys organized into a tree structure.

NT segments should not overuse the Windows registry in place of INI files. In particular,
operator preferences that are very segment specific should not be stored in the registry
since this may needlessly fill up the registry, and it will be difficult to manage as user
accounts are created and removed. Moreover, the registry is not portable between NT and
UNIX. It is recommended that operator preferences be stored underneath \h\USERS to
minimize porting problems between UNIX and NT applications. (Use the appropriate
COE APIs to determine the correct data directory for the current operator.) Segments
may use private INI files but, if they are used, they shall be located in the segment’s
data\INI subdirectory.

Except for COTS segments, segments shall not create root keys, but may create subkeys
underneath the root keys as desired. In all cases, segments shall create segment subkeys
underneath

HKEY_LOCAL_MACHINE\SOFTWARE\COE

using the convention SegType\SegDirName where SegType is one of the following:

Account Groups for account group segments
COE for COE-component segments
COTS for COTS products
Data for data segments
Patches for patch segments
Software for all other segment types.

SegDirName is the segment’s directory name. Segments shall use the segment prefix to
name all registry subkey entries.

For example, assume a software segment whose directory is SegA has a segment prefix
SEGA. Assume the segment needs to store two pieces of information underneath
HKEY_LOCAL_MACHINE\SOFTWARE:

1. the last coordinate system used (Universal Transverse Mercator [UTM],
Lat/Long, etc.) and

2. the last time a certain parameter was computed.

Then the required registry path is

4 Developers should avoid overuse of the NT registry. It is best used for system-level constructs and not as
a total replacement for .INI files.

Registry Usage

DII COE I&RTS: Rev 3.0 July 1997 6-7

HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA

and two appropriately named subkeys underneath this entry for storing value entries are
SEGA_Last_Coord and SEGA_Last_Time.

Note: The key HKEY_LOCAL_MACHINE\SOFTWARE\COE is created
when the DII COE is installed.

Microsoft encourages use of the registry in some ways that are strictly forbidden in the
COE because the COEInstaller tool performs some of these actions automatically.
Segments, excepting COTS segments, shall not use the registry to duplicate any actions
performed by the COE installation software:

· Segments shall not register “uninstall” information in the Uninstall key beneath
CurrentVersion, with two exceptions: (1) when the segment is a COTS product
that does register “uninstall” information as part of its setup, or (2) as authorized by
the DII COE Chief Engineer. If the segment does register “uninstall” information, it
shall specify the $USES_UNINSTALL keyword in the Direct descriptor.

· Segments shall use the Processes descriptor to specify background processes.

Segments shall not add values to either the Run or RunOnce keys beneath the
CurrentVersion key. The segment shall use the $RUN_ONCE keyword to specify
the requirement to run certain executables the next time, and only the next time, the
system is restarted. Use of this keyword requires approval by the cognizant DOD
Chief Engineer.

Reserved Prefixes, Symbols, and Files

6-8 July 1997 DII COE I&RTS: Rev 3.0

6.4 Reserved Prefixes, Symbols, and Files

The segment prefixes listed as reserved in Chapter 5 are also reserved in the NT-based
COE. The following segment prefixes are reserved and are specific to the NT-based COE:

NT Generic NT segments
WIN Generic Windows segments
WIN95 Windows 95 segments
WINNT Windows NT segment for 80x86 platforms

The environment variables listed as reserved in Chapter 5 are also reserved in the NT-
based COE. Segments shall not create environment variables with the same name as any
reserved environment variable. The following have no meaning in the NT-based COE, and
are not guaranteed to be set:

DISPLAY
LD_LIBRARY_PATH
SHELL
TERM
TZ
XAPPLRESDIR
XENVIRONMENT
XFONTSDIR

All remaining environment variables listed in Chapter 5 are also defined for the NT-based
COE.

The root-level AUTOEXEC.BAT, CONFIG.SYS, AUTOEXEC.NT, and CONFIG.NT
files are reserved files and shall not be modified by any segment, excepting COTS
segments. Moreover, all windows INI files (specifically, WIN.INI and SYSTEM.INI)
are reserved files and shall not be modified by any segment, excepting COTS segments.
Segments should create and modify their own local INI files.

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 6-9

6.5 Programming Standards

Programming in the Windows environment is considerably different from the
UNIX/X Windows environment. This subsection details programming practices that are
required to minimize problems in mixing the two environments.

6.5.1 File System

Windows NT supports five file systems: FAT, VFAT, HPFS, NTFS, and CDFS. FAT
(File Allocation Table) is the file system used by MS-DOS, but it is extended in both
Windows 95 and Windows NT (version 3.5 and later) to support long filenames (e.g.,
VFAT). HPFS (High Performance File System) originated with OS/2®. NTFS (NT File
System) originated with Windows NT as an improvement over both HPFS and FAT.
CDFS (CDROM File System) is specific to CDROM devices.

NTFS is the file system required for the DII COE because its security architecture corrects
known problems in FAT. DII-compliant systems shall be formatted to use NTFS.
However, the FAT and VFAT file systems are the only available file systems for floppy
disks. Therefore, the COE requires NTFS for hard disk drives, but supports FAT and
VFAT for floppy drives. The type of file system in use should be transparent to most
segments. When there is a choice, NTFS shall be used for hard and VFAT shall be used
for floppy drives.

A further complication is that NTFS filenames use the 16-bit Unicode® character set
instead of 8-bit ASCII. Unicode is a technique for representing foreign alphabets
(Japanese kanji, Chinese bopomofo, Greek, etc.). NT segments are not required to create
Unicode strings, but segments must be able to read filenames that may be Unicode strings.
This requirement is necessary because commercial products may be distributed on media
that use Unicode filenames and because Windows NT uses Unicode strings internally.

Pathnames in Windows usually include a disk drive designation (e.g., C:). The disk drive
containing the desired file may be located remotely on another machine. Windows allows
symbolic names, called the Universal Naming Convention (UNC), to be given to remote
paths so that an application need not know the platform, disk drive, or exact path to reach
a particular file. UNC pathnames start with two backslashes (\\) followed by the server
name, followed by the desired pathname and filename. Segments shall support the use of
UNC pathnames.

To summarize,

1. Segments shall support the use of long filenames. Filenames are not allowed to contain
embedded spaces and should use file extensions as appropriate to conform to standard
Windows usage.

2. Segments shall support use of UNC filenames.

Programming Standards

6-10 July 1997 DII COE I&RTS: Rev 3.0

3. Segments shall be capable of correctly interpreting Unicode strings, those representing
filenames.

6.5.2 Dynamic Link Libraries

NT segments shall use DLLs to the maximum extent feasible. DLLs are located in the
segment’s bin subdirectory, except for COE segments. COE DLLs are located
underneath the directory \h\COE\bin for all COE segments.

Windows originally exported DLL functions by assigning ordinal numbers to each
exported function. Modules linked to DLL functions by ordinal number. However, later
versions allowed linking to be by symbolic name rather than ordinal numbers. All NT
segments shall link by symbolic name and shall export DLL functions by symbolic name
rather than ordinal numbers. The reason for this requirement is that ordinal numbers for
exported functions could change with time, whereas symbolic names will not.

6.5.3 Graphics

PC segments shall support Video Graphics Adapter (VGA) and Super Video Graphics
Adapter (SVGA) resolutions, and should use the Win32 API Graphics Display Interface
(GDI) for creation of 2D graphics. This interface handles all calls made by applications for
graphic operations and thus provides a standard interface for such calls. As a result, the
Win32 GDI allows segments to be developed which are independent of the type of
graphics output device in the end user’s system. That is, segments need only make calls to
standard graphic services provided by the Win32 subsystem regardless of the display,
printer, or multi-media hardware used in the system.

To improve 2D graphics performance, the WinG library may be used. WinG is an
optimized library designed to enable high-performance graphics techniques under Win32,
Windows NT, Windows 95, and future Windows releases. Segments should use OpenGL
APIs for 3D graphics. OpenGL is a software interface that allows the creation of high-
quality 3D color images complete with shading, lighting, and other effects. OpenGL is an
open standard designed to run on a variety of computers and a variety of operating
systems. It consists of a library of API functions for performing 3D drawing and
rendering.

6.5.4 Fonts

Windows supports three different kinds of font technologies to display and print text:
raster, vector, and TrueType®. The differences between these fonts reflect the way that
the glyph for each character or symbol is stored in the respective font resource file. In
raster fonts, a glyph is a bitmap that Windows uses to draw a single character or symbol in
the font. In vector fonts, a glyph is a collection of line endpoints that define the line
segments Windows uses to draw a character or symbol in the font. In TrueType fonts, a
glyph is a collection of line and curve commands as well as a collection of hints. Windows
uses the line and curve commands to define the outline of the bitmap for a character or
symbol in the TrueType font. Windows uses the hints to adjust the length of the lines and

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 6-11

shapes of the curves used to draw the character or symbol. These hints and the respective
adjustments are based on the amount of scaling used to reduce or increase the size of the
bitmap.

Vector and TrueType fonts are device independent, while raster fonts are not. TrueType
fonts provide both relatively fast drawing speed and true device independence. By using
the hints associated with a glyph, application software can scale the characters from a
TrueType font up or down and still maintain their original shape. Segments shall use
TrueType fonts to take advantage of the increased performance, flexibility, and What-
You-See-Is-What-You-Get (WYSIWYG) screen-to-printer characteristics. Customized
application-specific fonts shall be avoided in favor of using industry standard fonts
wherever possible.

6.5.5 Printing

NT segments shall use the built in printing facilities provided by Windows. This includes
using the Windows supplied printer common dialog box for configuring a printer, selecting
print quality, selecting the number of copies, etc. All access to the printer shall be through
Windows APIs.

Developers should be aware that some Win32 APIs are available only in Windows NT.
Developers may use these APIs, but should ensure that the segment still operates correctly
in a Windows NT environment. As appropriate, NT segments should support drag-and-
drop printing.

6.5.6 Network Considerations

UNC Filenames

NT segments shall support UNC filenames to access network shared drives and
directories. If necessary, a segment can use the WinNet APIs to determine if a pathname is
a network pathname.

The COE contains three pre-defined shared directories: \h\data\PCglobal,
\h\data\global, and \h\USERS\global. The proper UNC filename to use for
these three directories is determined by accessing registry subkeys underneath
HKEY_LOCAL_MACHINE\HARDWARE as follows:

COE\Shared\data_PCglobal \h\data\PCglobal
COE\Shared\data_global \h\data\global
COE\Shared\USERS_global \h\USERS\global

NT segments that create network sharable services or devices shall store UNC information
in the registry. The subkey shall be either COE\Shared or SEGS\Shared depending
upon segment type. The subkey shall be located underneath
HKEY_LOCAL_MACHINE\HARDWARE for hardware devices (e.g., disk drives) or

Programming Standards

6-12 July 1997 DII COE I&RTS: Rev 3.0

HKEY_LOCAL_MACHINE\SOFTWARE for software (e.g., servers). The segment shall
document the proper registry information in the API documentation for the segment.

Network Byte Ordering

Computer architectures sometimes differ in the convention they use for how bytes are
ordered in a word. This is the so-called “big-endian, little-endian” problem. Computers in
which the most significant byte in a word is the leftmost byte use big-endian byte ordering.
Computers in which the least significant byte in a word is the leftmost byte use little-
endian byte ordering. Intel architectures use little endian byte ordering. When data is sent
across the network, it is important to agree upon the same convention for byte ordering.
The big-endian convention is also known as the network byte order and has been
established as the industry standard.

The COE adopts the industry standard for byte ordering5 and requires the use of network
byte order for any data transmitted across a heterogeneous LAN. Segments shall ensure
that all network data is transmitted in network byte order, except for certain data accessed
on a PC-only network shared disk drive such as the PCglobal data directory. Segments
shall use APIs in the WinSock interface to ensure that data sent across the network is in
network byte order. Segments shall store disk data accessible only by PCs in native PC
byte order, but shall store disk data accessible by non-PCs in network byte order. The
shared data directories and byte ordering are as follows:

\h\data\PCglobal PC native byte order. Data here is shared, but is
restricted to only PCs.

\h\data\global Network byte order. Data in this directory may be
accessible from a UNIX platform as well as PCs.

\h\USERS\PC PC native byte order. Data located here is specific to
operator login accounts. Since a login account is
either for UNIX or a PC but never both, this data is
platform-specific.

Network Communications

Windows NT supports four transport layer protocols:

NetBEUI provides compatibility with existing LAN Manager,
LAN Server, and MS-Net installations.

TCP/IP provides compatibility with standard UNIX
environments and a routable protocol for wide area
networks.

5 DCE developers should use DCE functions to implement network byte ordering. All other developers
should use XDR protocol.

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 6-13

Data Link Control (DLC) provides an interface for access to mainframes and
printers attached to networks.

AppleTalk® provides interoperability with Macintosh networks.

TCP/IP is the COE standard network protocol. Segments shall perform network
communications through WinSock APIs. Communications shall be designed to operate
asynchronously to ensure that the server or application does not “hang” while waiting for
a response.

6.5.7 Miscellaneous

The following statements apply to all new segment development. COTS segments may not
meet all mandatory requirements, but shall be documented where they do not fulfill a
mandatory requirement. To the extent possible, segments should conform to the
requirements stipulated by Microsoft for allowing an application to use the Windows
Logo. The I&RTS fully supports the Microsoft Logo branding approach as a subset of the
requirements for full DII COE compliance.

Mandatory

1. All hardware shall be NT-compliant, as defined by the document Microsoft
Windows NT Hardware Compatibility List #4094.

2. Segments shall support VGA and SVGA graphics.

3. Segments shall be “close aware.” This means that the segment must enable the Close

command and periodically check the close flag through the Query Close function.

4. Segments shall use common control and common dialog functions contained in

COMCTL32.DLL and COMDLG32.DLL.

5. As appropriate, segments shall support cut and paste operations through the clipboard.

6. As appropriate, segments shall support drag and drop operations.

7. Segments shall support 16x16, 32x32, and 64x64 icons.

8. Segments shall not use MS-DOS APIs inside a compiled program. These functions are

typically interrupt-driven or depended upon specific memory addresses and are not
portable. Win32 APIs only are to be used within a compiled program. Segments may
use MS-DOS commands within the various installation-related batch files.

9. Segments shall use only Win32 APIs. Win16 APIs are not supported and shall not be

used unless they are part of a COTS product for which there is no 32-bit alternative.

Programming Standards

6-14 July 1997 DII COE I&RTS: Rev 3.0

10. Segments shall not duplicate functionality already provided by Windows.

11. Segments shall support long filenames and UNC.

12. Segments shall support the use of Unicode strings.

Optional

1. Segment developers should run the Windows SDK tool PORTTOOL.EXE to identify
potential problems with how Windows APIs are being used.

2. Segments should operate under both Windows NT and Windows 95. The segment

should degrade gracefully if it uses APIs found only in Windows 95 while running in a
Windows NT environment, and vice versa.

3. Segments should define the STRICT constant when compiling Windows code. This

enables strict type checking during compilation.

4. Segments should avoid using environment variables. The registry or local INI files are

preferred alternatives.

5. Developers are encouraged to use message crackers contained in WINDOWSX.H.

Message crackers are a set of macros that make code more readable, simplify porting,
and reduce the need to do type casting.

6. As appropriate, segments should register icons for document types and provide a

viewer to allow the shell to display them. This is done through the
HKEY_CLASSES_ROOT registry. Refer to Microsoft documentation for the required
procedures. A future COE release may provide segment descriptors to accomplish
this.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 6-15

6.6 Segment Installation

Segment installation follows the same sequence as for the UNIX environment, and is
defined in Chapter 5. The key

HKEY_LOCAL_MACHINE\SOFTWARE\COE

is automatically created when the DII COE kernel is loaded. As segments are installed on
the NT platform, COEInstaller creates registry entries under this key corresponding
to segment type as explained in subsection 6.3. That is, assuming SegDir is the
segment’s directory name and SegType is the segment’s type, the installer creates the
following registry key entry:

HKEY_LOCAL_MACHINE\SOFTWARE\COE\SegType\SegDir

All entries underneath this registry key are deleted automatically when the segment is
deleted.

COEInstaller sets the environment variables INSTALL_DIR, MACHINE_CPU, and
MACHINE_OS for use in the PreInstall.BAT (or .EXE) and PostInstall.BAT
(or .EXE) descriptors. SYSTEM_ROOT is set to indicate where Windows was installed.
The installer also stores the location where the segment was loaded in the subkey
SegDir\SegPath. The value of this subkey includes the disk drive where the segment
was loaded, but it cannot be accessed until after segment loading is completed.

It is strongly recommended that segments use the segment descriptors provided to “self-
describe” the segment and allow the COEInstaller to perform the installation chores.
This ensures a consistent approach for all segment installations, and avoids potential
conflicts between different segment installation approaches.

NT COE Descriptors

6-16 July 1997 DII COE I&RTS: Rev 3.0

6.7 NT COE Descriptors

The descriptor files defined in Chapter 5 apply to the NT-based COE as well. This section
is provided as a quick reference for items that are NT-related. Refer to Chapter 5 for
complete discussion of each of the descriptors discussed below.

General comments follow.

· NT segments are required to use SegInfo for descriptors; that is, NT segments may
not use individual descriptor files since these are obsolete. All obsolete conventions are
explicitly invalid for NT segments and are flagged as errors by VerifySeg.

· Pathnames must be given using ‘\’ in conformance to the Windows environment.

· Segments should not need to specify a disk drive because such designations are

considered to be advisory only. For backwards compatibility, when a disk drive
designation is given, it and any associated pathname must be enclosed in double
quotes. This is required so that the tools can distinguish between use of ‘:’ as a field
delimiter for descriptor lines, or as a separator between a disk drive name and a
directory pathname.

· In accordance with commercial standards, executable descriptors shall have either a

.EXE extension (for compiled programs) or a .BAT extension (for batch files). This
applies to the “scripts” used in the installation process: DEINSTALL,
PostInstall, PreInstall, and PreMakeInst. Segment descriptor files may
optionally have a .TXT extension.

· The SYSTEM_ROOT environment variable is set to indicate where the Windows
system directory is located. This environment variable may be used in the installation-
related “scripts” at install time.

Comments related to specific descriptors follow.

AcctGroup

NT account groups must omit the shell parameter. It has no meaning in Windows.

NT COE Descriptors

DII COE I&RTS: Rev 3.0 July 1997 6-17

COEServices

The $GROUPS and $PASSWORDS keywords are not supported for NT platforms.
VerifySeg generates a warning if a segment descriptor contains these keywords.

DEINSTALL.EXE and DEINSTALL.BAT

Chapter 5 indicates that DEINSTALL is executed prior to a segment being removed from
the system. A segment that does not include a DEINSTALL descriptor is a permanent
segment and may be updated, but not removed. In many situations, it is desirable for the
segment to be removable, but there are no actions that DEINSTALL must perform. For
this reason, the NT-based COE allows DEINSTALL to exist as a zero-length file and it
may exist as a file with no extension.

FileAttribs

Because file permissions are different between the UNIX and NT environments,
FileAttribs is operating system specific. The COE tool MakeAttribs, when run
on an NT platform, will create a proper FileAttribs file for NT segments. C style
#ifdef preprocessor statements may be used to combine a UNIX and NT
FileAttribs descriptor.

Hardware

The diskname field for the $PARTITION keyword must be a disk drive name. For
example, to indicate that a segment requires 20MB on the F disk drive, the proper
$PARTITION statement is

$PARTITION:”F:”:20480

Network

The Network descriptor is not presently supported for NT platforms. VerifySeg will
issue a warning if a Network descriptor is found for an NT segment.

Processes

The $RUN_ONCE keyword identifies process that should be run the next time the system
is started. This keyword requires authorization by the cognizant DOD Chief Engineer
because of potential security and performance risks.

Registry

The Registry descriptor allows the segment to have the COEInstaller create registry
key entries.

NT COE Descriptors

6-18 July 1997 DII COE I&RTS: Rev 3.0

ReqrdScripts

Environment extension files are not supported for NT platforms. Therefore, the
ReqrdScripts descriptor is not supported for NT platforms. VerifySeg will print a
warning if this descriptor is present.

SegName

The $COMPANY_NAME and $PRODUCT_NAME keywords allow a COTS segment to
specify company and product names for the registry. These are added by the
COEInstaller, and must not be specified if the COTS product creates registry entries
itself.

SharedFile

This descriptor allows the segment to identify shared DLLs.

Web-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 7-1

7. Web-Based Applications

The DII COE includes a collection of COE-component segments to support Web-based
applications. This provides a foundation for the development of Web-based segments
within the DII COE, and for mission applications built on top of the COE. The Web
component segments provide services and infrastructure for the delivery of HTML files1

from a Web server to a Web browser. One of the key goals in adding Web capabilities to
the DII COE is to foster sufficient discipline to prevent anarchy, while permitting a flexible
Web runtime environment.

The COE Web component segments are designed to meld diverse system and operator
requirements while benefiting from advances in Internet technology and functionality.
Evolution of Web component segments is driven by several factors:

· architectural freedom for creativity and rapid progress,
· reduction of site maintenance workload,
· improved configuration control,
· improved service to customers with low-bandwidth,
· customer demand for access to (and sharing of) remote data sources, and
· the rapid pace of Web innovation.

This chapter is devoted to explaining the COE Web component segments and to providing
implementation guidance for creating Web mission-application segments. It should be
noted that the majority of users will likely use PCs, so this is considered the target client
platform for Web development. However, the principles and techniques presented here
work equally well for the UNIX environment.

Section 7.1 discusses fundamental COE Web concepts. Section 7.2 describes Web
administration and user accounts. Section 7.3 contains miscellaneous information pertinent
to developing Web segments, including an overview of HTML requirements for the COE
Web. Section 7.4 describes what happens when Web segments are installed, and section 0
completes the chapter with a brief discussion of supported configurations.

1 The term “HTML file” is used throughout this chapter to refer to hyperlinked pages that may be
traversed from a Web browser. These files may be documents or HTML pages in the traditional sense, but
may also contain “executables” in the form of applets or other techniques.

Fundamental COE Web Concepts

July 1997 DII COE I&RTS: Rev 3.07-2

7.1 Fundamental COE Web Concepts

All Web-based segments must be DII-compliant. This applies to Web-based COE
infrastructure software as well as mission-application software. The principles that govern
how segments are loaded, removed, or interact with one another are the same for all DII
COE segments, but COE Web component segments are treated more strictly because they
are the foundation for a Web-based application.

It is important to recognize that just because a Web segment is part of the COE, it is not
necessarily always present or required. Considerable flexibility is offered to customize the
environment so that only the segments required to meet a specific mission application need
be present at runtime. This approach allows minimization of hardware resources required
to support a COE-based system.

7.1.1 COE Web Component Segments

The DII COE provides a collection of component segments to provide the architectural
framework for managing and distributing data from a common Web server. Management
Services include system administration, security administration, and segment registration.
System administration includes the ability to monitor system performance. Security
administration includes a tool for managing Web-based access control lists (consistent
with the format required by the Web server), and the ability to create and manage Web
user accounts.

These services are independent of any particular segment. It is anticipated that diverse
segments will be able to coexist, providing access to a wide variety of data sets. However,
integration and/or cooperation between segments is the responsibility of the segment
developers.

7.1.1.1 Web Servers

A Web server is required to provide the interface between users and Web-based
applications. The DII COE provides a Web server as a COE-component segment, thereby
eliminating the requirement for individual Web segments to include a Web server. A Web
mission-application segment shall not include its own Web server. It is required to use the
Web-server segment provided by the DII COE. This is in keeping with the overall DII
COE philosophy of not duplicating DII COE services.

A site installation may contain multiple platforms set aside to function as Web servers. The
platforms may also serve other functions, but it is expected that sites will use firewalls to
isolate Web servers from the rest of the world. For this reason, the COE requires that all
Web-application segments be loaded on a machine that already contains a Web server.
That is, the application interface must be on the Web server but other parts of the system
that the application needs to access (e.g., database server) need not reside on the Web
server.

Fundamental COE Web Concepts

DII COE I&RTS: Rev 3.0 July 1997 7-3

7.1.1.2 Web Browsers

The COE includes a Web browser, and COE-based systems will use that browser.
However, non-COE based systems can use their native browser to access services
provided by the Web server. Web technology is evolving at a rapid pace, so the Web
server must accommodate and address evolving Web standards. The DII COE Web server
does not restrict or constrain the types of HTML files (Virtual Reality Modeling Language
[VRML], executable content, etc.), subject to appropriate security considerations.

7.1.2 Web Mission-Application Segments

Web-application segments shall place their HTML files in the directory

$DATA_DIR/local/SegDir/pub

where SegDir is the segment’s assigned directory. The HTML files are thus placed in
the local data directory on the machine that hosts the Web Server(s). The COE creates a
symbolic link from

COE/Comp/WebSvr/data/pub/SegDir

to this directory at installation time. The reason this symbolic link is created is so that the
Web server can access HTML files provided by the segment. Only Web component
segments are allowed to modify HTML files created by other applications, which is
typically for the purpose of inserting value-added HTML tags prior to delivery to a
browser. The importance of these principles cannot be overemphasized to avoid
environmental conflicts between software components.

Web Account Groups

July 1997 DII COE I&RTS: Rev 3.07-4

7.2 Web Account Groups

Operating systems such as UNIX and NT assign individual login accounts for users. There
may also be configuration files for login accounts that establish a runtime environment
context. The Web environment presents a different set of requirements for user accounts
since there is no need for a standard UNIX or NT login account or any of the associated
configuration and environmental files. Instead, Web user logins are validated by the Web
server that is also responsible for enforcing access control, including restrictions based on
the combination of user account and IP (or IP class) on a directory-by-directory basis.

Web account groups can be used to share access privileges among a collection of users
according to how they will use the system. This technique is used in the COE to identify
three distinct account groups:

· Web System Administrator Accounts,
· Web Security Administrator Accounts,
· Normal Web User Accounts.

Other account groups may exist for specialized system requirements, but all account
groups follow the same rules. Within a Web account group, profiles can be created as with
normal COE account groups defined in Chapter 2.

7.2.1 Web Security Administrator Account

Security administration in the COE Web is implemented through a special Web account
for managing the Web user account database. Precise functionality of security
management is dependent on the Web server and its configuration. The role of the Web
security administrator includes:

· Ability to create individual Web login accounts
· Ability to create operator Web profiles
· Ability to review the Web server error and user access logs

The Web security administrator need not be the DII security administrator, but this is
recommended to centralize security management.

7.2.2 Web System Administrator Account

System administration consists of a specialized collection of functions that allow a system
administrator to perform maintenance, monitoring, and configuration operations. The role
of the Web system administrator includes:

· Ability to create and to restore backup tapes
· Ability to monitor and configure the Web COE-component segments
· Ability to establish site-specific products and links for user access
· Ability to review the Web server error and user access logs

Web Account Groups

DII COE I&RTS: Rev 3.0 July 1997 7-5

· Ability to tailor Web applications (consistent with the application design) to balance
overall system performance

The Web system administrator need not be the DII system administrator, but this is
recommended to centralize system administration.

7.2.3 Web User Accounts

Most operators will not require, nor will Web administrators grant access to, capabilities
described in the previous sections. Most system users will be performing mission-specific
tasks. The precise features available depend upon which mission-application segments
have been loaded and the profile assigned to the operator.

The COE establishes individual operator login accounts and stores user-specific data
items, including profile information describing which options and services are available to
the operator. Since users do not directly access Web segments (i.e., the Web server
provides the interface between the browser and segments), many of the normal DII COE
requirements for additional user-specific directories and services do not apply.

Miscellaneous

July 1997 DII COE I&RTS: Rev 3.07-6

7.3 Miscellaneous

The use of server-side includes (SSIs)2 is not allowed because of the additional complexity
it imposes on the Web COE in the control of data. The subsections that follow provide
additional requirements and information for Web segments, beginning with HTML
specifications.

7.3.1 HTML Specification

The rapid pace of innovation in Web technology makes it difficult to standardize on the
exact HTML syntax that Web-application segments must support. Indeed, any HTML
standard is only as good as the browser implementation. HTML version 3.2 is the latest
standard, but it is not fully featured. For example, it lacks the <FRAMES> tag.
Furthermore, version 3.2 is not fully supported by all popular browsers (e.g., Netscape 3.0
does not support style sheets). DII COE Web segments must, as a minimum, support
HTML 3.2 and frames. The application segments should be designed to work with
browsers that do not support frames or all parts of the HTML 3.2 specification, or at a
minimum notify “disadvantaged” users. The Web server must be able to support
HTTP 1.0 and HTTP 1.1 transport protocols.

An HTML file consists of a document head and a document body, as identified by the
HTML tags <HEAD> </HEAD> and <BODY> </BODY>. For the purposes of this
section, it is convenient to separately discuss the data content within these tags.

7.3.1.1 HTML <HEAD>

The HTML head shall contain three important data elements:

· Title (determined by the Web segment that creates the HTML file)

· Key words (used by Web search engines to identify and index Web sites for global

search)

· Expiration date (using EXPIRES) to assist browsers in automatically rejecting out-of-

date information

Key words or subjects are appended to META tags and significantly facilitate the ability of
Web search engines to locate data services at other Web sites. These tags must not contain
classified information (even if the entire system is running on a secure network); access to
the underlying data will only be granted to users with valid accounts at the associated Web
site. The use of Web search technology (bots, crawlers, spiders, etc.) requires
coordination with each Web site since a login/password is required for any DII-compliant
Web server connection; importantly, access to data by search engines can be provided for

2 Server-side include is a technical process whereby HTML pages are parsed by the server prior to the
page being sent to the client. This allows the server to dynamically insert information into the page before
it is sent to the client.

Miscellaneous

DII COE I&RTS: Rev 3.0 July 1997 7-7

HEAD-only information (once a login and password have been authenticated for the
special “HEAD-only” account). Additional restrictions can be implemented using access
control lists in each directory. A segment that only generates dynamic, on-the-fly, HTML
files may create a static HTML file with identification information specifically for the
purpose of identifying the segment’s information content. The HTML file shall be called
segment_name.htm. The format of this HTML file shall be a standard HTML file with
META tags for key words and subjects, thereby allowing HEAD-only searches to gather
profile information.

7.3.1.2 HTML <BODY>

The DII COE approach is to specify the minimum set of HTML tags that are currently
supported, or likely to be supported, by the popular browsers (e.g., from Microsoft and
Netscape). The COE does not explicitly prohibit the use of additional HTML tags as
required by a Web segment to satisfy its requirements, but provision may be made by the
segment developer to alert “disadvantaged” users to potential problems.

Each Web segment is responsible for properly classifying every HTML page that it
creates. The classification marking should be placed at the top and bottom of the HTML
page (there is no notion of page breaks in HTML).

7.3.2 User Interface

Innovations to the Web interface offer improved user interaction and navigation via the
FRAME tag, Java, JavaScript, and ActiveX functionality. These techniques enhance the
user interface capabilities of Web-based applications, but at a price. The security
community has expressed concerns about the potential for viruses or other malicious
software spread through Java applets and applications. Developers should note that DISA
is presently formulating a policy on Java usage for creating applets, and for execution by
Java Virtual Machines. An update will be issued when an appropriate policy and guidance
have been formulated.

Refer to the DII User Interface Specification for further style-related guidance in
developing Web-based applications.

Installing Web Mission-Application Segments

July 1997 DII COE I&RTS: Rev 3.07-8

7.4 Installing Web Mission-Application Segments

Installation of Web segments, whether they are COE-component segments or mission-
application segments, is accomplished as for all other segments. There are some special
considerations for Web mission-application segments.

Web mission-application segments must reside on the same platform as a Web Server. The
COE installation tools will not allow a Web-application segment to be loaded unless there
is a Web-server segment already loaded.

During installation of a Web mission-application segment, two symbolic links for use by
the Web server are established, namely

· A link for accessing Web pages from the directory
 COE/Comp/WebSvr/data/pub/SegDir

 to the directory
 $DATA_DIR/local/SegDir/pub

· A link for accessing Common Gateway Interface (CGI) programs from the directory
 COE/Comp/WebSvr/data/pub/cgi-bin/SegDir

 to the directory
$DATA_DIR/local/SegDir/cgi-bin

Also, the httpd.conf file will contain an “execution” statement and a “pass” statement
of the form:

Exec /cgi-bin/* /h/COE/Comp/WebSvr/data/pub/cgi-bin/*
Pass /* /h/COE/Comp/WebSvr/data/pub/*

Here are two examples to clarify the navigation process for locating HTML files and CGI
programs. Suppose a segment called MYSEG uses a gateway program called TEST, which
is referenced in an HTML page as

FORM ACTION=/cgi-bin/MYSEG/TEST

This program will be found by the Web server as follows. First, the “execution” statement
is used to convert the file’s location to

/h/COE/Comp/WebSvr/data/pub/cgi-bin/MYSEG/TEST

Then, the symbolic link transfers this reference to

$DATA_DIR/local/MYSEG/cgi-bin/TEST

As a second example, suppose an HTML page contains a hyperlink to a file

HREF=http://hostname:9000/MYSEG/DOC

Installing Web Mission-Application Segments

DII COE I&RTS: Rev 3.0 July 1997 7-9

Once the connection is established to a DII-compliant Web server, then the “pass”
statement is used to convert the location of the HTML file to

/h/COE/Comp/WebSvr/data/pub/MYSEG/DOC

Then, the symbolic link transfers this reference to

$DATA_DIR/local/MYSEG/pub/DOC

Note: The DII COE establishes the SUID for the Web server.
Applications must not be created which depend upon a particular
setting. Instead, segments shall allow the COE segment installer
to handle such details automatically.

All HTML files in $DATA_DIR/local/SegDir/pub must be readable by the Web
server. The Segment Installer will automatically set the permissions on Web HTML files
when the segment is loaded. Furthermore, all HTML files created by the segment for Web
access must be placed in $DATA_DIR/local/SegDir/pub and must be readable by
the Web server.

Supported Configurations

July 1997 DII COE I&RTS: Rev 3.07-10

7.5 Supported Configurations

The COE Web component segments establish an open architecture that is not tied to a
specific Web browser. They use industry standards for interfacing to the Web server (e.g.,
CGI) and de facto standards for HTML (as contained in HTML 3.2 and extended by the
leading browsers). The HTML specification has not progressed to the point where a
common presentation is guaranteed across all popular browsers.

The list of supported Web servers and Web browsers is heavily dependent on market
forces as the Web industry evolves to satisfy commercial requirements. In general, it is
desirable to minimize any specific dependencies on a particular browser or server.
Presently, there is no commercial agreement on Web server standardization and much
work remains to evaluate the leading candidates. Refer to the DISA DII COE Chief
Engineer for the current status on server and browser requirements.

Precise hardware requirements in terms of memory, disk space, etc. is a function of many
factors and cannot be specified in a general context. Refer to the DISA DII COE Chief
Engineer for hardware configuration options.

DCE-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 8-1

8. DCE-Based Applications

The DII COE is designed to support applications using the distributed client/server
computing model. There are many ways to implement a distributed client/server
environment. The DII COE provides the Open Software Foundation’s (OSF) DCE as a
baseline for distributed architecture/standards. To be DII-compliant, there is no
requirement to use DCE as the baseline for a client/server implementation or that
segments be client/server-based. However, if the application uses RPCs (Remote
Procedure Calls), they must be compatible with DCE RPCs.

DCE is an integrated set of services that supports the development, use, and maintenance
of distributed applications. A set of written standards and a package of developer’s
software are available from the OSF.1 Based on these, a large number of applications have
been written by various software vendors for end users. Use of DCE is not restricted to
UNIX environments. Clients or servers may operate on other operating systems, although
most applications employ Microsoft Windows or Windows NT clients and UNIX servers.

The purpose of this chapter is to provide the minimum essential information necessary for
developers to begin creating DCE mission applications. It is not a tutorial on DCE, nor
does it provide an in-depth discussion of development tools, management procedures, or
compliance criteria (in the sense of DCE standards). Developers using DCE should refer
to OSF or vendor documentation for general guidance on DCE.

The DII COE provides a COTS implementation of a DCE server and a DCE client.
Developers shall use these rather than providing their own copy of an alternative COTS
DCE product. This is required of all segment developers, including mission-application
developers, because the end COE-based system is likely to be installed on a LAN that
includes multiple COE-based systems where incompatible DCE products could create
interoperability and administration problems.

Note: Segments must specify the DCE attribute to make use of any of
the DCE features described here. A fatal error message will be
generated by the VerifySeg tool if a segment references DCE
segment descriptors but fails to indicate that it is a DCE segment.
Refer to Chapter 5 for information on how to specify the DCE
attribute for a segment.

1 DISA maintains a facility called the Operational Support Facility in the Washington, DC area.
Throughout this chapter, unless otherwise indicated, OSF refers to the Open Software Foundation and not
to DISA’s Operational Support Facility.

DCE Overview

July 1997 DII COE I&RTS: Rev 3.08-2

8.1 DCE Overview

OSF’s DCE is commercial software that provides a comprehensive set of services that
support the development, use, and maintenance of distributed applications. DCE allows
diverse systems to work together cooperatively and masks the technical complexities of
the network. Because DCE is independent of the operating system and network, it is
compatible with many diverse environments.

The strength and appeal of DCE stem from its ability to make a group of loosely
connected systems appear as a single system to Information Systems (IS) staff, end-users,
system administrators, and application developers. Applications executed under DCE take
advantage of untapped resources on networks by finding the platform best suited for a
particular job. Similarly, complex tasks can be easily split among multiple computers on
the network to reduce computing time and improve performance. From a security
perspective, users in a DCE-enabled computing network need only log in once for access
to all network platforms.

Many compare the OSF’s DCE to wiring or plumbing because it provides the underlying
transport layer that enables distributed client/server applications to interoperate across a
heterogeneous environment. DCE currently consists of the following services:

· RPCs
· CDS
· Distributed Time Service (DTS)
· DFS
· Security Service
· Threads.

8.1.1 Remote Procedure Call

The key to making many disparate resources function logically as one system within DCE
is the RPC. In DCE, RPCs let multiple computers execute applications, or parts of
applications, on the platform chosen by the developer as best suited for the task.

The RPC makes a wide variety of application capabilities possible that were previously
either impossible or extremely difficult to implement. These capabilities include the
following:

1. allowing multiple clients (in a client/server network) to interact with multiple servers,
and multiple servers to handle multiple clients simultaneously,

2. the ability for clients, through DCE’s Directory Services, to identify and locate

network users by logical service name,

3. protocol independence across the network for any platform, and

DCE Overview

DII COE I&RTS: Rev 3.0 July 1997 8-3

4. secure communications across the network.

8.1.2 Cell Directory Services

The DCE CDS provides a single naming model throughout a distributed environment.
Directory Services let users access network services, such as printers, servers, and other
network platforms, by name, without the necessity of knowing where the resource is
located within the network. This lets users access a network resource even if the resource
has been moved to a different physical network address.

The CDS can make use of its built-in X.500 Global Directory Service (GDS) for locating
resources in external cells, or can make use of Domain Name Service (DNS) for this
purpose. Cell names are constructed differently depending on which approach is selected.

· The DII COE will use DNS to locate external cells, and therefore will use DNS-style
cell names.

8.1.3 Distributed Time Service

DCE DTS allows multiple platforms to work together to share information without timing
problems that might affect event scheduling and duration. DTS regulates system clocks on
each network computer so that they match each other. Clocks are synchronized, and the
service ignores faulty system clocks. The DCE Time Service uses authenticated DCE RPC
so that, unlike the Internet Network Time Protocol, the DCE global clock synchronization
is secure. Also, to support network sites that wish to use time values from outside
sources, DTS supports the Network Time Protocol standard. The DCE Time Service also
includes a published Time Provider Interface to allow it to receive inputs from other
reliable time sources, such as Global Positioning Satellite (GPS) or other military systems.

· DCE DTS provides intra-cell clock synchronization in the DII COE. Inter-cell
synchronization is not supported.

8.1.4 Distributed File Services

The DCE DFS is a fundamental element for information sharing in DCE-enabled
networks. It is one of many facilities that could theoretically be built on the foundation
provided by DCE’s Core Services. DFS unites the file systems of all network nodes for a
consistent interface, making global file access as easy as local access. It replicates files and
directories on multiple network machines for fast and reliable access, even when
communication lines and network hardware fail. It also caches copies of currently used
files at the requesting node to minimize network traffic and provide fast data access.

Note: DFS is not presently provided as part of the DII COE. It is
described here for completeness sake. Specific communities may
implement DFS on top of the DII COE. Information in this

DCE Overview

July 1997 DII COE I&RTS: Rev 3.08-4

chapter about DFS describes it as it is planned to be used by the
GCCS community. This may serve as a useful model for other
mission domains.

8.1.5 Security

While security maintenance and administration are simplified for one central system behind
a glass wall, security for dozens of computers scattered across a wide area network, all
operating as a single entity, is much more complicated. DCE’s Security Services ensures
distributed security. The Security Service software layer is made up of three mechanisms:
authentication, authorization, and user registry. DCE invokes these services through the
RPC, which maintains the integrity of information passed across the network.

The authorization mechanism grants authorized users access to resources and rejects
requests from unauthorized users. DCE implements Access Control Lists (ACL) based on
a draft POSIX standard that provides a fine-grained object/operation security
authorization model.

The user registry permits users to access multiple network resources through a single
password and single login. The registry is a single database of user information that may
be replicated around the network. User passwords and security-related attributes are
centrally stored and universally available.

Many security features, including auditing, delegation, and a registry extension to support
non-UNIX systems, are provided by DCE. Improved security is one of the primary
motivations for the movement to DCE for DII applications. OSF DCE provides the
following significant features related to security:

1. DCE Authentication provides a secure mechanism (unforgeable) for establishing
identity. This prevents a user from compromising the authentication process by using a
‘root’ account on any machine to project UNIX credentials.

2. Authorization for execution of applications is based on DCE credentials in addition to

UNIX credentials. The granularity of execution control on a base UNIX system is
limited to an owner/group/world model that is not sufficiently flexible. As a result,
almost all applications are set to enable world execute permission.

3. Authorization for operation invocation is based on DCE credentials. Most existing

applications either do not have granular access decisions or have implemented their
own means of access control. An example of the latter is a database server that may
define roles as a means of protecting classes of operations. New applications and those
being migrated need this more consistent means of defining, managing, and performing
these operations.

DCE Overview

DII COE I&RTS: Rev 3.0 July 1997 8-5

4. DCE security allows a client to securely project its identity, including memberships, in
other security groups. This allows authorizations to be group-based rather than user-
based.

5. Single-login allows all related access decisions to be based on the same distributed

identity. Without this capability, users may be required to login to multiple systems or
applications, and security administrators must keep multiple identities and security files
in synchronization.

6. Execution auditing records DCE and UNIX credentials. This records the identity of

anyone running an audited application (see below).

7. Protection against packet insertion/replay, packet interjection, and eavesdropping can

be achieved when using DCE RPCs at the appropriate security level or when using the
Generic Security Services API (GSSAPI) to protect data transmitted over the
network.

Note: For the near term, security for DII distributed applications will be
provided by the DCE Security Service, which is based on
Kerberos. The OSF and DOD are exploring ways to link DCE
security with DOD initiatives such as MISSI. Other security
mechanisms may be provided in future versions of the DII COE
as the COE migrates from a software-based security solution to a
hardware-based solution.

8.1.6 Threads

The underlying Threads Service is used by several DCE services, including the RPC.
Threads are programs that use “lightweight” processes to perform many actions
concurrently. Threads are particularly useful in allowing server applications to process
multiple requests concurrently. DCE Threads are based on the POSIX threads standard.
OSF has designed the multi-threading capability of the Threads Service to be easily
accessible by programmers wishing to use it in applications. Most commercial applications
using threads are written in C, so these DCE services can be accessed through the C
programming language. Bindings exist for Ada, as well as other high-level programming
languages.

8.1.7 Client/Server Concepts

DCE is specifically designed to manage the distribution of processing across multiple
platforms. It is a powerful infrastructure for building client/server architectures. The
client/server computing model for DCE introduces a few additional terms.

1. In the DCE context, a server is a single executable program that provides services to
clients. An example of a server is a DBMS or a map server that provides map images
to a calling application. A site can employ multiple servers to create a more available

DCE Overview

July 1997 DII COE I&RTS: Rev 3.08-6

or more balanced service environment. A DII segment can contain multiple servers
each performing some related service.

2. A server implements one or more services, each of which is offered through an

interface. Interfaces are well defined, using the DCE Interface Definition Language2

(IDL), and are the concrete descriptions of a service. Usually, a server implements at
least two interfaces. One provides the operational interface for client requests. The
other provides a management interface (e.g., for security). Internally, all DCE servers
implement other interfaces used for querying, stopping, or reconfiguring the server.

3. An interface provides access to one or more operations, each of which corresponds to

a specific function or procedure call. For example, a complex math interface could
provide separate operations for complex addition, subtraction, multiplication, and
division. The operations within an interface should be very closely related.

4. In DCE clients have the option of locating one or more copies of a server through use

of the DCE CDS. The client presents a CDS name (or listing) and, optionally, a
resource element (object Unique Universal Identifier [UUID]). The CDS name
corresponds with the logical service name rather than a machine or hostname. This
indirection allows DCE to provide location independence and employ multiple
compatible servers for availability or load balancing.

5. Each operator using DCE is identified with a unique DCE principal. A DCE principal

has a DCE account maintaining its DCE identifier (UUID) along with its UNIX
identity (uid, gid). A DCE principal will map uniquely to a UNIX userid.

6. Each DCE server is also identified with a particular principal. For security reasons,

server principals should map to UNIX userids that are not allowed to login (i.e.,
without a login password). These UNIX userids correspond to the concept of a
“system account” (like uucp).

7. Although it is not necessary for the client and server to be installed on separate

machines, one of the primary reasons for constructing client/server applications is to
share access to one or more server resources by multiple clients. Since the segment is
the smallest installation unit, the client and server portions of an application are usually
delivered in separate segments.

2 The DCE IDL should not be confused with the CORBA IDL. Both are similar in concept, but differ in
implementation.

DII COE DCE Services

DII COE I&RTS: Rev 3.0 July 1997 8-7

8.2 DII COE DCE Services

The DII COE supplements the COTS DCE product with a number of tools to assist the
developer in creating segments that use DCE and in installing and managing DCE at an
operational site. Commercial products are preferable, but many of the tools and features
required are not available commercially. The tools discussed in this section, and the DCE-
related tools described in Appendix C, are specifically designed for the DII COE rules for
DCE applications. In addition, development of DCE guidance for the COE highlighted
some issues that must be addressed in order to assist in the development of DCE mission-
application segments and implementation of DCE in the COE.

8.2.1 Standard Server Installation

The first part of a DCE server installation process must run as root. Installation of the
DCE server has been standardized for the COE and is part of the DCE COE-component
segment. Installation uses a parameterized dcecp script to create an initial CDS entry and
principal for the segment, and give it permissions to create the rest of the structure.

8.2.2 Standard Server Initialization

A secure DCE server must make between 7 and 30 DCE calls on initialization to establish
configuration and security information and to register its presence to a CDS. The COE
provides a standard server initialization routine.

8.2.3 Standard Client Binding

DCE provides an “automatic” binding routine that will find a suitable server and make a
connection. However, this does not work for secure connections or the recommended
object model. The alternative requires the client to deal with CDS querying, security, and
the possibility of missing servers. The COE provides a standard client binding to allow
COE clients to make a single call and not have to deal with this level of complexity.

8.2.4 Standard Reference Monitor and ACL Manager

Secure DCE servers must implement a Reference Monitor (RM) routine to verify the
client’s credentials against a server’s ACL, and an ACL manager to maintain application
ACLs. For the DII COE, a standard RM and ACL manager are provided as a library
routine to every server developer so that security decisions are made in a standard,
certifiable manner. The OSF provides a boiler-plate RM, which has been parameterized
and “segmented” for use by DII applications.

8.2.5 DCE Verification

The VerifySeg tool includes verification of DCE application segments. Refer to
Chapter 5 for the appropriate segment descriptor entries and to subsection 8.3.4 for a brief
synopsis of the required segment descriptors. COE tools verify that a DCE segment has

DII COE DCE Services

July 1997 DII COE I&RTS: Rev 3.08-8

been properly installed and that CDS entries meet the COE guidelines and agree with the
entries in the relevant DCE segment descriptor.

8.2.6 Template Application

Creating DCE segments can be difficult because of complexities within DCE itself. To aid
segment developers, the COE Developer’s Toolkit contains an example template
application. This application serves as a working model and template for developers of
other DII COE applications using DCE.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-9

8.3 Runtime Environment

Many of the security-related objects and concepts within the rest of the COE and UNIX
have counterparts within DCE, although the DCE object often has more powerful features
and attributes. This section states requirements for the development of client/server
applications using DCE. The guidance provided shall be followed by all DII applications
using DCE, including applications that do not yet fully comply with the DII COE. Failure
to comply with this DCE guidance may result in operational conflicts between
applications.

This section begins with a description of the directory structure required for DCE
segments. The general structure for segments is described in Chapter 5, but it is useful to
collect the information into this section as an easy reference for relevant information.
Then, the conventions for CDS and DFS for the COE are described. A summary of
segment descriptors relevant to DCE are described and the remainder of this section gives
specific information on COE conventions for DCE, organized by server and client.

8.3.1 Segment Directory Structure

DII segments are delivered in accordance with a fixed file/directory structure defined in
Chapter 5. Some DCE information is also delivered in UNIX files. Other information, such
as CDS information, must be delivered as files and built in CDS as part of installation.

Figure 8-1 illustrates the DII COE directory structure for segments. The shaded portions
indicate the additional DCE-specific information which is required. Chapter 5 contains
information about segment descriptors that are required for all segments, including DCE
segments.

The additional information required to describe DCE segments is as follows:

· IDL for all interfaces shall be delivered in files of the form interface.idl in the
segment’s include directory, where interface is the name of the interface.

· DCE installation/deinstallation dcecp scripts shall be delivered in files named
dce_install.dcp and dce_deinstall.dcp in the segment SegDescrip
directory.

· Additional DCE-related configuration information is recorded in the DCEServerDef
and DCEClientDef segment descriptors. See subsection 8.3.4.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-10

SegDir

dce_install.dcp
dce_deinstall.dcp
DCEDescrip

dcecp

server1.dcp
server2.dcp
servern.dcp

Icons Menus fonts app_defaultskeytab

server1.tab
server2.tab
servern.tab

interface.idl

SegDescripInteglibincludemandatabinScripts

stubs.o

Figure 8-1: COE Directory Structure for DCE Segments

8.3.2 CDS Structure

Figure 8-2 illustrates the CDS structure for a DII COE cell.3 The following description
summarizes the structure:

· Server configuration entries are included under

 /.:/hosts/hostname/config/srvrconf/servicename.

 These entries will be built by the segment DCE installation script.

· User principal DCE entries have the same name as the UNIX userid. They are included

in CDS under /.:/sec/principal/username, but can be referenced in
security APIs using just the username.

· Server principal DCE entries have the name hosts/hostname/servicename.

These entries are referenced in CDS under
 /.:/sec/principal/hosts/hostname/servicename.

3 Although the CDS directory is described using notation that is similar to the UNIX directory/file system,
the CDS is entirely independent from the UNIX file system. The CDS structure includes containers that
correspond with UNIX directories, and entries that correspond to leaf nodes or files.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-11

U
B

ce
lln

am
e

m
as

te
r

se
c

df
s

se
rv

er
1

se
rv

er
2

se
rv

er
n

ho
st

_n
am

e
ce

ll_
na

m
e

ce
ll_

al
ia

se
s

po
st

_p
ro

ce
ss

or
s

JO
PE

S
G

SO
R

T
S

E
M

U
B

JO
PE

S
G

SO
R

T
S

E
M

U
B

ap
pl

ic
at

io
n

D
B

A
dm

Sy
sA

dm

us
er

1
us

er
2

us
er

3

se
rv

er
1

se
rv

er
2

se
rv

er
n

ho
st

1
ho

st
2

ho
st

s

E
M

C
om

p

se
rv

er
1_

pr
of

ile
se

rv
er

2_
pr

of
ile

se
rv

er
3_

pr
of

ile

se
rv

er
1

se
rv

er
2

se
rv

er
1

se
rv

er
2

se
rv

er
3

ob
je

ct
s

ho
st

2
gr

ou
ps

ho
st

1

C
O

E
G

SO
R

T
S

JO
PE

S

dc
e

us
er

se
rv

er
W

at
ch

te
am

pr
in

ci
pa

l
pr

of
ile

gr
ou

p
or

g

h
su

bs
ys

se
c

fs
lo

ca
lh

os
tn

am
e_

C
H

kr
bt

gt
la

n_
pr

of
ile

se
rv

er
1

se
rv

er
2

se
rv

er
n

sr
vr

ex
ec

sr
vr

co
nf

ho
st

da
ta

xa
tt

rs
ch

em
a

cd
s_

se
rv

er
co

nf
ig

se
lf

au
di

t_
se

rv
er

ho
st

n
ho

st
2

ho
st

1

ce
ll_

pr
of

ile
ho

st
s

/

se
rv

er
1

se
rv

er
3

Figure 8-2: CDS Layout for the DII COE

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-12

· Security groups and organizations also appear in CDS under /.:/sec. (Directories

/.:/sec/group and /.:/sec/org respectively.)

· All server binding entries are contained under /.:/h. There is one container for each

mission-application segment, named with the segment’s assigned directory, and one
container for the COE, with sub-containers for each COE segment.

· Each segment container contains a profile entry for each service offered by the

segment. This entry is named /.:/h/SegDir/servicename_profile and
serves as the starting point for all client binding searches.

· There will be a service binding entry for each server for each host on which the server

is installed. The entry has the form
 /.:/h/SegDir/hostname/servicename.

 The name of each entry matches the service name.

· A groups container under each segment is used to store any server group entries

used in the binding search path.

· An objects container under each segment is used to store any object entries used to

locate object resources used in binding searches.

8.3.3 Distributed File System

Note: The DFS global cell directory structure is still being designed.
COE developers who intend to use the global cell must contact
the DII COE Chief Engineer.

8.3.4 DCE-Related Segment Descriptors

Chapter 5 details the segment descriptor information required for DCE segments. A
synopsis of the information is presented here as an aid to locating DCE-relevant
information. Refer to Chapter 5 for detailed discussion.

· The $SERVICES keyword in the COEServices descriptor should not be necessary
for DCE applications, since endpoints are defined dynamically.

· The $SERVERS keyword within the Network segment descriptor shall not be used

for DCE services. Instead, use the $DCESERVICE.

· The segment descriptor Permissions may be used, but it is preferable to

implement the application using DCE security services.

· The $DCEBOOT keyword is provided for DCE servers started by dced.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-13

· Include a $PASSWORDS keyword in the COEServices descriptor to establish a

UNIX userid for each server principal.

· Document DFS files used with the $DFSFiles keyword.

This information is used to automatically configure, and verify, DCE CDS usage.

8.3.5 Server Issues

This subsection deals with issues involved in the design and implementation of DCE server
applications.

8.3.5.1 Naming

The following guidelines apply to the naming of servers, interfaces, CDS names, and
operations:

· The service name is the name that represents the logical service provided by a server.
In the non-DCE world, this name is put in the $SERVERS keyword. The purpose of
$SERVERS is so that a client does not have to reference the actual hostname of a
server. Examples are masterTrk, slaveTrk, masterComms. DCE servers are
not tied to a specific host and hence do not use the $SERVERS keyword (Network
segment descriptor). The $DCESERVICE keyword is used instead to list the services
offered by this segment.

· The following convention shall be used to assign service names: A segment offering a

single service shall use names of the form SegPrefix_server where SegPrefix is
the segment’s prefix. Segments offering multiple services shall use
SegPrefix_service where service is a meaningful name for the service. This
convention will be used in naming many DCE resources associated with a service and
will be represented in the text as servicename.

· Interface names also will be controlled to avoid duplication. The interface names shall

be descriptive of the function of the interface. Each interface shall include the segment
prefix. Examples are: MAP_location, MAP_access, and MAP_rdaclif for a
segment (whose segment prefix is MAP) offering three interfaces. Operation names
become the names of remote APIs and shall also begin with the interface prefix or a
subset of it (e.g., location_find, access_read, access_update).
Operation names shall also be consistent with other COE requirements on naming of
APIs.

 DCE will automatically provide a management interface for server applications. The

only management operation that is controlled is shutdown, which can only be
performed by dced. If a server wants to restrict other management functions, the

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-14

server must deliberately disable them using the dced management routines:
dced_server_disable_if() and dced_server_enable_if(). Further
information on server management can be found in Chapter 8 of the OSF DCE
Application Development Guide--Introduction and Style Guide (Rev 1.1) .

 DCE will also automatically add an interface for managing ACLs. The example

interface MAP_rdaclif mentioned earlier uses the ACL manager API, rdaclif.
The rdaclif interface consists of remote procedures called by acl_edit and
includes remote procedures to retrieve an ACL, replace an ACL, and test whether a
given client is allowed to perform a given operation.

· Names of services and interfaces need not be registered with DISA for approval.

Inclusion of the segment prefix ensures that names are unique.

The CDS directory is a naming system somewhat like a filesystem. It uses a similar
convention for naming its objects and directories. For example,

/.:/h/JOPES/JOPESdb_server

Servers typically use CDS for storing information about the location, interface numbers,
and objects (i.e., resources) which they offer. Use of CDS naming requires as much rigor
as does file system naming.

· Every DCE server segment shall be assigned a directory structure within CDS that

parallels its file system location (e.g., /.:/h/SegDir where SegDir is the segment’s
assigned directory). All CDS entries related to this segment are contained within this
directory.

In DCE, every DCE server runs under the identity of a DCE principal. Even servers
offering the same service but on different machines require a unique DCE identity in order
to provide reliable authentication and authorization. DCE principal names are directly tied
to the CDS so server principal names can be expressed as a global name or as a name
relative to a cell. The global name is considerably longer due to the need to unambiguously
specify a principal regardless of the cell from which it originates. Within a cell, the
principal can be named without including any cell identifiers because DCE will
automatically append the cell information during processing.

· The convention for a DII DCE server is to use the principal name

/.:/hosts/hostname/servicename. Each DCE principal contains
information relating to a UNIX account that contains its uid. If each principal of the
same service had a unique uid, control of server file system resources would be
difficult. Each server providing the same service will share a UNIX uid by creating
principal aliases. This allows each server to have a unique account with its own
password, home directory, etc., yet share the same DCE principal and UNIX account.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-15

· There will also be a security group created for every DCE service. This group will
contain all the principals that represent the servers for this service. The purpose of this
group is to allow instances of a service on different machines to trust one another. The
name for this group will be identical to the servicename. Therefore a segment
containing multiple services will have multiple security groups. If an application
requires additional DCE groups, they will all be prefaced with the segment prefix.

8.3.5.2 Interface Definition

DCE application interfaces are defined using the DCE IDL defined by OSF. All interfaces
are identified with a globally unique identifier that ensures that clients bind to a server
offering the proper interface. IDL interfaces also allow the identification of versions of an
interface. The version numbering scheme allows clients to bind to a server offering any
compatible version. Assuming upward compatibility, versioning allows servers to be
upgraded independently of clients, and allows old clients to continue to operate with new
servers.

· DII-compliant applications shall make use of version numbers and shall provide
upward compatibility between versions.

8.3.5.3 Server Registration

Servers record information (bindings) in CDS that identify the interface resources and
server location so that DCE clients can find the server when a client requests its service.
DCE stores information in CDS structures in three types of records: profiles, groups, and
server entries. The record name within CDS that the client accesses can correspond to a
specific server, a group of servers, or a CDS profile.4 Servers within a group are
considered to be completely interchangeable, and are selected at random. Profiles allow
the selection of alternative servers based on priorities.

Registration of DCE services shall follow the following guidelines:

· The server registration information within CDS shall follow the structure shown in
Figure 8-2, which uses the mission-application segment GSORTS as an example. Each
segment shall have a directory under /.:/h corresponding to the UNIX file system
directory for the segment (see Figure 8-1). For example, if SegDir is the segment’s
assigned directory, it will have a CDS entry of /.:/h/SegDir. (The segment’s
assigned directory, SegDir, is established when the segment is registered.) Note that
COE-component segments are underneath /h/COE/Comp so their corresponding
CDS entry is /.:/h/COE/Comp/SegDir. Within the segment directory, individual
server instances will be registered under a directory for the host on which the server is
installed. The name of the server entry shall be the servicename.

4 The term CDS profile refers to a CDS entry used in locating alternative instances of a service. It has no
relationship to the term profile used elsewhere in the I&RTS to identify applications and resources
available to a class of users.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-16

· A profile entry shall be created for each service directly under the segment directory
using the name servicename_profile. A service can also use RPC groups to
collect a set of equivalent servers. Group entries shall be placed under
/.:/h/SegDir/groups. The segment developer shall use the profile entry as the
starting point for binding requests within a client application. This is the name that will
be addressed by clients seeking a server.

· The server entry directly under the segment directory will always be a CDS profile

entry. The name will have the form servicename_profile. In the simplest case,
the profile will contain a single entry, pointing to the server entry for the host on which
the server is actually installed. However, by making the client address a profile entry
even in this simple case, the server can be moved, or alternative servers implemented,
with no changes to the client.

For example, in Figure 8-2, the GSORTS segment contains three servers: server1,
server2, and server3. The server1 software is installed on host1 and host2,
server2 is installed only on host1, and server3 is installed only on host2. Each
server instance is registered in CDS, as shown above, during segment installation. The
CDS profile entry server1_profile will contain pointers to the two instances of
server1, with appropriate priorities depending on whether these are equivalent servers
or one is a prime and the other a backup. The server2_profile and
server3_profile entries will point to the respective server entries. Note, however,
that by simply installing a new instance of server2 and making the proper entries in
CDS, a client will be able to locate alternative instances of server2 with no application
software changes.

· Servers may implement a more complex arrangement of CDS profiles and groups
within this structure. A groups directory will be created under the application’s
assigned directory as well as an objects directory. The naming of entries
underneath groups and objects is completely under the control of the developer,
within the structure above.

The DCE API supports the registration of servers at execution time by the servers.
However, to reduce the volume of changes, it is recommended that DII applications build
most of the structure in advance, lacking only the specific endpoint information. The
specific endpoint (i.e., TCP port) is supplied at runtime to the endpoint mapper and is not
stored in CDS. Building the structure in advance also allows it to be constructed using
dcecp rather than the more complex C-language API. Installation scripts are discussed in
more detail below.

· DII-compliant applications shall register servers within CDS during segment
installation. The exception to this will be for tactical applications that are installed on
systems that are transient members of cells.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-17

Note: This means that the CDS registration structure is not an indicator
that a server exists. The client needs to actually check to make
sure the server is alive.

· DII-compliant application servers shall use rpc_ep_register() on server startup
to register the endpoint with the endpoint mapper. This call is part of
server_intialize(), as discussed below.

The structure above is designed for the case where service is provided by servers within
the local cell. However, DCE has no restriction on the location of the server. A profile
entry may point to servers in a foreign cell. This allows a profile to be constructed such
that, for example, it would look for a server first in the local cell, then within a near-by
cell, and then anywhere. Profiles can also be used to establish preference for servers based
on other criteria as well, such as the performance of the server hardware, or to allow
clients to select servers with compatible data representations to reduce data conversion
overhead.

The following is required for cross-cell profiles:

· The required approach for accessing cross-cell services is to have a profile in each cell
that references local profiles on remote cells. The starting profile has the same name as
the profile that is configured into all clients. That is,

/.:/h/SegDir/servicename_profile

The local profiles will be similar to the profile set up for a single-cell implementation,
and will point to all servers within the cell. The primary profile gives priority to servers
in the local cell before looking in a foreign cell. This is illustrated in Figure 8-3. The
local profile could also be a group if the local servers are equivalent. A profile is
required if one server is the master and one is a backup.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-18

/.:/h/GSORTS

Priorities

9

GSORTS_local_Profile

host1

GSORTS
entry

host2

GSORTS
entry

Priorities

9
5

GSORTS_Profile

Priorities

9
9

GSORTS_local_Profile

/.:/h/GSORTS

GSORTS
entry

Cell1

Cell2

Figure 8-3: Access to Servers in Local and Foreign Cells

8.3.5.4 Server Startup

DCE servers are normally started by means outside of DCE’s control after the DCE
environment is started. DCE 1.1 introduced a facility for managing the startup and
monitoring of DCE servers. This facility is provided by the dced daemon and facilitates
full security and remote control. When used in conjunction with the client binding
recommendations below, servers can be started only as needed, can be restarted in case of
failure, and can even be started along with any prerequisite processes as needed. The
dced process runs as root and is the parent of all DCE servers. Using the configuration
information that it stores, it can start the server under any userid/group pair in any

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-19

directory. The $DCEBOOT keyword is used to identify DCE servers started by dced at
boot time.

The server startup function dce_server_register() is provided in order to
simplify the development of servers. Unfortunately, not all DCE 1.1 vendors provide this
API. The function is included in the dce_server_initialize()API discussed
below.

8.3.5.5 Configuration

DCE servers contain a large number of configuration attributes that are often hard-coded
in the application. The coding of these attributes makes servers hard to change or move
and maintain. The dced daemon maintains an extensible server configuration database.
DCE servers use this database to obtain their configuration information. This database is
secure and is remotely manageable. When dced starts a server, it establishes an
environment for the server based on its configuration record and allows the server to read
additional initial information, similar to the windows .INI file.

Server configuration information is maintained in CDS under a name of the form

/.:/hosts/hostname/config/srvrconf/servicename.

For more information, refer to the DCE Administration Guide.

The configuration information which dced currently maintains is shown in Table 8-1.

The configuration information is easily extendible by teaching the dced about new
configuration attributes. Additional attributes can be defined for any DII application as
needed. Attributes will be assigned names depending upon their scope. Attributes that are
required as part of COE support shall be named:

/.:/hosts/hostname/config/xattrschema/COE_attributename.

Attributes that are specific to a server segment shall be named:

/.:/hosts/hostname/config/xattrschema/SegPref_attributename

where SegPref is the segment’s prefix.

In the case of COE-component segments, adding an attribute requires prior approval of
the DII COE Chief Engineer. For mission-application segments, approval is required of
the cognizant DOD Chief Engineer.

· Application developers are responsible for creating configuration entries as part of
their segment installation scripts (dce_install.dcp and dce_deinstall.dcp
shown in Figure 8-1) invoked at installation time.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-20

Information Description
arguments command-line arguments required by the server
directory the home directory in which to start the new server
gid the group identity under which the server will run
keytabs a list of keytab object UUIDs where the server stores its keys.

Although a list is permitted, only the first one is used.
program the name of the server program to run
prerequisites a list of server configuration object UUIDs which must be

running
principals a list of server principal names under which the server runs.

Although a list is permitted, only the first one is used.
starton a list of modifiers for starting conditions (boot, explicit, failure)
uid the UNIX uid under which the server will be started
uuid a uuid which is assigned to the server object
services the DCE information about the operation provided. The

following information is defined for each operation:
annotation string describing the service

binding(s) protocol sequences which
register the service

flags modifiers affecting the service’s
mapping {disabled}

ifname the interface name

interface the interface UUID

objects a list of object UUIDs associated
with the service

Table 8-1: dced Configuration Information

· If the application is started by dced, the DCE daemon will ensure that the appropriate
environment (e.g., UNIX uid, gid, home directory, and calling parameters) is
established before starting the server. The server will use the dce_inq_server()
API to obtain its configuration record. There is no requirement for the server to use
the configuration information, except to retrieve any relevant extended attribute
information and pass it to the initialization routines. Servers not started by dced must
use the dced_object_read() API to obtain this information.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-21

8.3.5.6 Initialization

Every DCE server performs a set of functions in order to initialize. This includes
registering one or more groups and entries in CDS (if not already created), and creating
and registering endpoints with the endpoint mapper. In addition to these functions, a
secure server must establish its identity (login), refresh its login context, and periodically
change its password.

· Servers do not normally need to perform CDS registration or unregistration during
server startup or cleanup. This is not necessary because the DII COE environment is
rigorously defined and because a client does not use the presence of CDS information
as indication of server liveliness. Registration is normally performed as part of server
installation.

· Servers in a tactical environment may perform registration either at cell configuration
time or the first time a server initializes.

Without using a common server initialization API, a server normally performs anywhere
from six to thirty API calls. (See the O’Reilly DCE Security book for an example of the
API calls required for a secure server.) The sequence of calls is nearly identical for all
servers in a well-controlled environment like DII because the parameters are defined by
the configuration record.

Note: A common server_initialize() API is defined and
provided as part of the COE to perform these actions. This
routine initializes the server, including security, using the server’s
configuration information.

A server using a special initialization sequence (as defined above) can retrieve its
configuration information to perform initialization. Following this guidance will allow
servers to be started on demand and can be truly configuration-less.

One of the most critical initialization functions of a server is to register endpoints with the
endpoint mapper in dced. This too is easily accomplished with the server_initialize API.

8.3.5.7 Security

To write a secure DCE application, besides the application code, the application developer
needs to write client code that obtains the proper authentication and forwards it to the
server. Clients are usually authenticated by the inherited login context created after
dce_login. The COE provides a unitary login feature so that DCE login is performed
as part of user login. To use authenticated RPC, a client adds a single call to the API
rpc_binding_set_auth_info(). Clients that use automatic binding will need to
use the binding_callout option in the ACF file.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-22

Once the client has been authenticated, the server code gets the privileges of the calling
client and determines the level of authorization possessed by the calling client. This code is
called the reference monitor and it performs the authorization checks. The reference
monitor receives the client access request from the server, retrieves the ACL of the object
requested and checks the client’s authorization against the ACL. The DCE Security
Service supports two authorization protocols that can be used with authenticated RPC:
DCE authorization and name-based authorization. The DCE authorization protocol is
based in part on the POSIX file-protection model, but is extended with ACLs. An ACL is
a list of entries that specify a privilege attribute (such as group membership) and the
permissions that may be granted to principals who possess that attribute.

· To be DII-compliant, applications shall only use DCE authorization.

8.3.5.7.1 Authentication

Secure servers require DCE security accounts in order to participate in DCE
authentication. Each account consists of a principal, and membership in a single primary
group and organization. The name of the account is identical to its principal name. DCE
security names can be as simple as

comms_server

or hierarchical such as

hosts/hostname/mapserver.

· COE hosts shall use DCE principal names that align one for one with UNIX operator
names for interactive users. This will allow the use of the integrated login application
supplied with DCE. Non-user principals associated with DII servers shall use
hosts/hostname/servicename.

The following DCE Security Service application program interfaces can be used to
perform login for a non-interactive principal:

sec_login_setup_identity()
sec_key_mgmt_get_key()
set_login_validate_identity()
sec_key_mgmt_free_key()
sec_login_certify_identity()
sec_login_set_context()

These functions will be performed automatically when using the DCE-provided API,
dce_server_sec_begin().

Secure servers must store their passwords in files since they are not capable of normal
interactive login. These files are known as keytab files.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-23

· For the DII COE, each application segment shall use its own keytab file. Servers shall
use names that are of the form servicename.tab. Keytab files will be placed in
the directory /h/SegDir/data/keytab as shown in Figure 8-1. This directory
must have access permissions set so that only the server principal can read or write to
it.

Once a server establishes its login context, it is responsible for refreshing the context
before it expires and changing passwords before they can expire. The API for managing
password expiration is sec_key_mgmt_manage_key(). This function does not
return and requires a dedicated thread.

The APIs for login refresh are:

sec_login_get_expiration()
sec_login_refresh_identity()
sec_key_mgmt_get_key()
sec_login_validate_identity()
sec_key_mgmt_free_key()
sec_login_certify_identity()

8.3.5.7.2 Authenticated RPC

A client program calls rpc_binding_set_auth_info() to specify how an
authenticated RPC connection will be set up. There are three important parameters that
must be provided: authentication service, authorization service, and the protection level.
Developers should use the following settings for these parameters:

Authentication Service. The default for DCE applications is dce_private, which
uses private key authentication. No other parameters are valid for DII DCE.

Authorization Service. An application can specify three possible values for the
authorization service: dce, name, and none. The value ‘dce’ means to pass a
Privilege Attribute Certificate (PAC). This is the setting that shall be used for all
DII DCE segments.

Protection Level. DCE allows an application to specify just how much the data in
an RPC should be protected. These are: none, connect, call, packet, integrity,
privacy. Integrity provides an authenticated connection between parties and
ensures that messages have not been tampered with in transit. Privacy provides the
highest level of protection for the RPC by encrypting the data using Data
Encryption Standard (DES). Although the SIPRNET is encrypted using Network
Encryption Standard (NES), the DES encrypting provides additional protection
from packet snooping within a site.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-24

· DII-compliant applications shall specify at least integrity. The privacy level should be
used for particularly sensitive information.

8.3.5.7.3 Authorization

Once the client has been authenticated, the server must make an authorization decision.
The RM is the server code for retrieving the client’s PAC. The information from the PAC
will be used by the RM to make the authorization decision. While each server can
implement its own RM, DCE packages RM code in its library. The intent is for all servers
to use this same library code. This will insure that access decisions are made correctly and
uniformly.

The ACL is a key part of the Authorization facility. Applications must be capable of
establishing and managing ACLs. DCE provides a set of APIs for using ACL managers
(dce_acl_*).

8.3.5.7.4 Generic Security Service API

DCE provides a method for using DCE security without rewriting applications to use
DCE RPC. DCE contains extensions to the IETF RFC 1508 and 1509 GSSAPI that will
allow current applications to use DCE authentication and authorization. GSSAPI DCE
extensions can be easily identified since all base GSSAPI entry points start with gss_
while DCE GSSAPI extensions start with the prefix gssdce_. The most important DCE
GSSAPI extension is the gssdce_extract_cred_from_sec_context. This call
returns the Extended PAC (EPAC) which contains the security attributes of the original
client and any intermediate servers. The server uses the EPAC to make its authorization
decisions. For more information on the DCE Security Service and the GSSAPI, see the
following:

1. The Security chapters of the OSF DCE Application Development Guide-Core
Components Volume and the OSF DCE Administration Guide-Core Components
Volume (DCE Security Service only).

2. Reference pages (section 3) from the OSF DCE Application Development Reference .

3. Reference pages (sections 5 and 8) from the OSF DCE Command Reference.

4. Chapter 8, DCE Security Programming, Wei Hu, O’Reilly & Associates, 1995.

Note: The DCE Security Service and GSSAPI do not currently make
use of Fortezza authentication or encryption. Integration of
Fortezza with DCE is under investigation.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-25

8.3.5.8 Auditing

DCE provides an enhanced audit facility consisting of the audit daemon, the dcecp
control program, and the audit logging client library. An audit daemon exists on every
DCE system. Applications audit events by sending RPCs to the audit daemon on the local
system. The audit daemons write the audit records to the audit log file, which stores all the
event records so that they can be reviewed later. The audit daemon also maintain event
filters. Event filters are data structures that determine what events should be logged. Event
filters are stored in memory and in files called event selection list (ESL) files. In order to
dynamically tailor the audit process, the audit daemon exports an interface that allows the
control program, dcecp, to change the event filters and expand the range of events that
should be audited.

The final process of the audit facility is the audit-logging client library. This allows an
application to send audit records to the audit daemon. When an application makes a call to
the library, the library checks to see if the event should be audited. If the event filters
determine it should not be audited, no RPC is sent to the audit daemon.

This represents a simplistic view of how auditing takes place in DCE. More complex
actions are actually taking place including the dynamic updating of event selection lists.
The most important point is that applications need only work with the audit-logging API
to audit events.

· DII DCE servers shall not write audit information to private audit files. The ‘central
trail’ shall be used to log all audit events.

A complete list of the DCE Audit API routines can be found in the OSF DCE Application
Development Reference, Volume 2.

An event is any action that takes place and is associated with a code point in the
application server code. Each event has a symbolic name as well as a 32-bit number
assigned to it. Each event number is a tuple made up of a set-id and the event-id. The set-
id corresponds to a set of event numbers and is assigned by OSF to an organization. The
organization manages the issuance of the event ID numbers to generate an event number.
The structure and administration of event numbers can be likened to the structure and
administration of IP addresses.

The concept of events allows each DCE implementation to establish audit events for a
wide variety of actions that may take place within applications. DCE has established a
hierarchy of formats for events. Once again, these are similar to the class structure within
the administration of IP addresses. As part of the DCE implementation, DISA will request
the assignment of a Format B event number. Format B is designed to be used by
intermediate-sized organizations that need the 8 to 16 bits for the event-id. This will
provide for the greatest flexibility and growth. Events may also be logically grouped
together into an event class. This is a case where it may be more efficient to refer to

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-26

several events as a single entity/class. Event classes are assigned event class numbers by
the OSF. If required, event class number will be requested from the OSF.

8.3.5.9 Threads

DCE automatically implements threads for server applications. The use of threads can be
beneficial to allow the server to service multiple clients concurrently. The number of active
threads can be controlled by max_calls_exec in rpc_server_listen(), which
can be set to zero if the server software is not “thread safe.”

While the use of threads is beneficial and recommended, the following cautions are
provided:

· It is well known that threads can conflict with Ada tasking. Use threads with caution
with Ada servers.

· Many COTS packages are also not “thread-safe.” Calls to databases, windowing

systems, and other routines should be done with caution from within a thread.

· Handling of fork/exec and signals is different when threads are used.

When using exceptions with threads, the application must explicitly include the
dce/pthread_exc.h header file.

8.3.5.10 Installation

In addition to installing software and data to system disk, server installation must also
establish entries in DCE CDS as discussed earlier.

· Application segment developers shall include dcecp installation/deinstall scripts in the
segment descriptor directory. The installation script will build the registration structure
in CDS for each interface as part of server installation. The scripts are named
dce_install.dcp and dce_deinstall.dcp. These scripts must contain
conditional statements to ensure that some of the entries, such as the SegDir container
under /.:/h, are only created once for each cell. These scripts are executed
automatically by the segment installer tool during segment install/removal.

· It is recommended that there be a separate servicename.dcp script for each
interface, to simplify configuration and maintenance of server installation procedures.
The primary dce_install.dcp script must invoke each of the individual service
scripts.

· DCE installation is normally performed by the root user logged in using the DCE
cell_admin identity. In order to reduce the exposure during installation, DCE

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-27

applications will be installed in a two-step process. During the first step, the minimal
set of secure operations is performed. These include:

1. Creating a DCE account using the principal segments/SegDir.

2. Creating a CDS directory /.:/h/SegDir.

3. Setting the ACL for /.:/h/SegDir to permit all functions for the principal

segments/SegDir.

4. Creating a security group group/segments/SegDir.

5. Setting the ACL for the security directory hosts/hostname to allow the

segments/SegDir to create principals below it.

6. Allowing segments/SegDir to create one account for each service

implemented by the segment (object creation quota).

Note: This first installation step is available as a standard utility in the
DII COE. It is parameterized based on a set of DCE-related
descriptors.

The second phase of DCE installation is performed by the segment-provided scripts
(dce_install.dcp, etc.) and is run using the account segments/SegDir. It
completes the installation process by performing the following for each service:

1. Create a DCE principal (once per cell), usually with the same name as the
hosts/hostname/servicename to be used by the server.

2. Create a binding profile for each service of the form

 /.:/h/SegDir/servicename_profile

 (once per cell) and add each server entry.

3. Create a server leaf entry (once per instance)

 /.:/h/SegDir/hostname/servername.

4. Create server configuration entries (for each instance).

5. Create default ACLs for any server defined objects.

6. Create security entries for the segment under application and group.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-28

Note: The entire installation process is automated based on information
in the segment descriptor files.

8.3.5.11 Server Exceptions

A DCE server must have proper cleanup code. Cleanup code is responsible for graceful
shutdown and includes unregistering with the runtime, removing the endpoint from the
endpoint mapper, and killing any security management threads.

· Servers wishing to honor a remote ‘stop’ request, must register an authorization
function using rpc_mgmt_set_authorization_fn(). This can be used to
control other management interfaces.

· Servers shall be prepared to catch signals and perform the necessary shutdown. This

can be performed by converting signals to thread cancellation and using a cleanup
function (pthread_cleanup_push) or using the exception facility to catch the
pthread_cancel_e condition.

comm_status, fault_status op(); /* in ACF file */
error_status_t op (args ...); /* in IDL file */

Alternatively, routines can return status by using the return code as follows:

op([comm_status, fault_status] st) /* in ACF file */

· All DII-compliant applications shall catch the SIGHUP and SIGTERM signals and
perform a graceful termination. By convention, SIGHUP means to terminate as soon
as practical, and SIGTERM means to terminate immediately.

Note: The initialization API is accompanied by a server termination
function so that every programmer does not need to write one.

8.3.5.12 Client-Side Libraries

When a server is being implemented as a reusable service, it is often desirable to develop a
client-side library of interface routines to isolate the client from the DCE interfaces. This is
the model most often used in commercial packages that provide a callable service. The
client deals only with a well-defined call-level interface, independent of the fact that
operations are performed by a server. This also allows some library procedures to be
performed entirely at the client when there is no need to interact with the server.

· COE services may provide an API library separate from the IDL when that will
improve the efficiency or usability of the software. When a library is provided, it shall
be delivered in the segment’s lib directory. Unless authorized by the DII COE Chief
Engineer, the library must be provided for all supported COE hardware platforms.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-29

8.3.6 Client Issues

This section provides guidance for client application developers to make use of DCE
services to access DCE servers.

8.3.6.1 Binding

Binding is the term DCE uses to refer to a client locating an appropriate server prior to
performing an RPC. This is another area where a DCE application writer has plenty of
latitude. Binding encompasses issues such as selection of transport protocol, selecting one
or multiple servers based on load, location, or other criteria. Ideally, the binding will be
resilient and deal with servers dying, stale entries in CDS or endpoint maps, automated
remote server startup, and meeting server prerequisites. DCE also supports three methods
for binding which affect the way applications are developed (automatic, explicit, implicit).

· It is recommended that applications use the explicit binding method since it is the most
flexible. In cases where preserving the API does not permit the use of automatic
binding for the client, this does not preclude a server’s use of explicit binding. Servers
should always use explicit binding so they can obtain client identity and/or client
objects.

· One precaution in using explicit binding is that the client is responsible for obtaining
another binding should the initial handle fail (i.e. the first server is unavailable). This
feature is provided automatically by the runtime when automatic_binding is
used.

· Automatic binding does not naturally allow for secure binding or for passing an object
reference for use in object binding. When using automatic binding, use the
binding_callout ACF attribute to annotate the binding for security or object
purposes. This will register a call-back routine, to be supplied by the client, that can fill
in security and object information. Refer to the OSF DCE Developers Guide - Core
Components.

Note: The DII COE provides a standard API that clients can use to
obtain a binding handle. This simplifies writing client applications
and permits the features described above to be implemented as
needed.

There are two different binding models available within DCE. In the service model, any
implementation of a service is assumed to be able to handle any request. This is
appropriate for general purpose services such as math routines. The alternative is the
resource or object model, in which servers also identify specific objects for which service
is provided. Clients then identify both a service and an object, and DCE will bind to a
server that satisfies both requirements. For example, an OPLAN database could identify
the OPLANs that it contains, or a map server could identify the maps it can provide. A

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-30

client could then request “Connect me to a map server that has a map of Bosnia.”
Different objects could also be used to distinguish between test and “live” versions of a
database. The object model can also be used to identify a “role” being supported by a
server. For example, the client could request “Connect me to a server that is supporting
the ‘observer’ role.” The object model is a little more complex, but provides much greater
capability.

· DII COE client/server applications should use the resource model for binding. For the
simple case where there is currently no distinction among implementations, each server
should register an object corresponding to the server, and the clients should request
this object. This establishes the structure for greater flexibility later. It also establishes
an object-oriented flavor to interfaces that may ease transition to the use of object
request broker technology in the future.

· DII COE client applications need some means of determining the UUIDs of these
objects. There are two choices: define the object UUID values in ‘header’ files, or use
CDS as an object catalog. Object entries in CDS shall be placed under the
/.:/h/SegDir/objects directory or under another subdirectory under
objects (i.e., objects/Maps). Groups can be used to collect these objects (for
example, groups/Maps may refer to object entries objects/Bosnia and
objects/Iraq).

8.3.6.2 Exceptions

Exceptions are a means of handling failure conditions which occur during program
execution. DCE implements exceptions locally and remotely as a result of an exception
occurring during execution on a server. Using exceptions requires the use of a potentially
new programming style. DCE uses exceptions internally as a means of conveying the
failure status of RPC communications-related failures. The default handling of an
exception is a program abort which is not desirable. The choices for an application
developer are as follows:

1. Use exceptions by including dce/pthread_exc.h and defining TRY/ENTRY
blocks around code that may raise an exception.

2. Attempt to avoid exceptions by using the comm_status and fault_status

attributes in an ACF file. To this end, new RPC operations should reserve use of the
last parameter in each RPC as a means of conveying error status by doing the
following:

void op (args..., error_status_t *st); /* in IDL file */

· DII applications shall make provisions for handling exceptions using one or the other
of these methods. The latter method is recommended because of its language
independence, but either method is acceptable.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 8-31

8.3.6.3 Security

In DCE, the client is responsible for selecting the security protocol and level, whereas the
server maintains the choice of accepting the client’s request or rejecting it. The API
rpc_binding_set_auth_info() is used to specify the client selections. The
default protection level is rpc_c_protect_level_default. The default
authentication service is rpc_c_authn_default. The default authorization service is
rpc_c_authz_dce.

· DII COE clients shall use the DCE authorization protocol along with packet integrity.
Applications requiring additional security should justify and identify those
requirements appropriately.

In order for a client to initiate a secure transaction with a server, the client must know the
server’s principal name. This information along with the security level is placed in the
binding handle. In the absence of a standard binding interface, the client can obtain the
server’s principal name using rpc_mgmt_inq_server_princ_name or can query
the configuration record on the host whose binding was obtained from CDS.

Note: The latter is performed automatically by the COE supplied
binding API.

8.3.6.4 Auditing

There is no difference between auditing in a client and in a server. However, auditing is
almost always performed in a server rather than in a client. Auditing can be performed by
non-DCE applications, but the user or application must perform a DCE login in order to
obtain DCE identification information that is inserted in the audit records. See
subsection 8.3.5.8 for a discussion of auditing.

8.3.6.5 Threads

While threads are not automatically enabled for DCE clients, the DCE pthreads package is
available for use by DCE clients. The cautions mentioned under server issues apply to
clients. Client application developers should read more about the implications before using
threads, particularly with Ada applications. Vendor release notes should be consulted
when using threads. Vendors may require the use of special compile flags such as
-D_REENTRANT or _THREAD_SAFE_ and may need to be linked with vendor-specific
libraries.

8.3.7 Miscellaneous Information and Requirements

This final subsection provides some remaining details for properly using DCE within the
context of the DII COE.

Runtime Environment

July 1997 DII COE I&RTS: Rev 3.08-32

· The COE establishes the CELL environment variable to contain the current cell name.

· UNIX userids shall agree one-for-one with DCE principals.

· Each UNIX group used with a DCE application shall have a matching DCE group, but

not all DCE groups must have a matching UNIX group.

· Account groups do not have a useful analog in DCE, although organizations or groups

could fill this function.

· UNIX file permissions are similar to DCE ACLs, although ACLs are much more

flexible.

Distributed File System

DII COE I&RTS: Rev 3.0 July 1997 8-33

8.4 Distributed File System

DFS offers some unique characteristics as a remote file service product. Some of these
capabilities are often replicated by individual applications. Using DFS can provide
significant benefits to applications that need to provide coherent file access to a very large
community. Using DFS, all sites have access to a single logical file space. In GCCS 3.0
this access is provided by a NFS-to-DFS gateway machine located at each of the GCCS
sites. DFS also provides a built-in replication mechanism that can be used to provide rapid
file access and high availability. It is fully integrated within DCE and uses secure DCE-
RPC as well as DCE’s fine-grained access control mechanisms.

Note: This section uses GCCS as an example and the guidance given is
specific to the GCCS global cell. However it is also of interest to
other DII developers since the techniques applied to GCCS could
also be implemented for other areas.

The DFS provides a transparent, secure global file system. DFS has enormous potential
for sharing files within and among sites. DFS will be installed within a global cell that has
machines at four sites world-wide (DISA, US Transportation Command [TRANSCOM],
US European Command [EUCOM], and US Pacific Command [PACOM]). This cell will
provide secure, global visibility to current information using automatic replication. All
GCCS sites will share files by access to a file server within this cell. Initially, DFS will be
used for a limited number of files, but the usage will grow as experience is gained.

DFS provides the following features:

1. Client-side caching: DFS is a file service which maintains information about a client
and the client’s state. Servers are knowledgeable about clients, files in use, and
network copies. This allows clients to maintain full disk-based copies of server files to
achieve performance rivaling that of local disks. This is accomplished using a token
passing scheme. The NFS-to-DFS gateway machines will be configured with large
disk caches (dedicated storage) for caching of remote files. The probability of finding
cached data within each site, or at least within the theater, will be high and so reduce
network-induced delays.

2. Transparency (POSIX semantics): DFS supports nearly complete POSIX semantics

for file system access. This guarantees consistency of file access to non-replicated files
across all DFS clients. For files that are not replicated, DFS will ensure that any file
changes are immediately visible to other users of the file. Other systems with stateless
implementations have far weaker semantics due to the possibility of having multiple
copies in client buffers.

3. Replication: DFS divides file systems into smaller hierarchies called filesets. DFS can

create replicated read-only filesets of a given master writeable copy. Replication
provides load balancing and additional availability. A flexible scheme exists for keeping

Distributed File System

July 1997 DII COE I&RTS: Rev 3.08-34

the master and read-only copies in synchronization within selectable time intervals. All
reads from the writeable fileset immediately see any changes, while reads from a read-
only replica see the change after some delay, usually about 30 minutes depending upon
the scheduled replication interval. These consistency controls allow a trade-off
between performance and coherence. In general, replication is only used for files that
change infrequently.

 Note that “immediately visible” is from the perspective of the NFS-to-DFS gateway.

Because clients access the gateway using NFS, the NFS consistency semantics apply,
and updates may not be immediately seen by the clients.

4. Backup filesets (cloning): DFS provides the ability to create a backup of a fileset and

to make this backup available online as a read-only copy. The backup is accomplished
using an efficient system of file pointers, so that only files changed after the backup
take up additional space in the file system. The use of backup can allow users to
recover overwritten or deleted files without administrative help and without doubling
file space requirements.

5. Use of DCE security: DFS uses DCE security to provide authenticated access and

ACLs for granular access. DFS ACLs are based on DCE ACLs, but implement a
specific security model that is much more flexible than UNIX file permission bits.
ACLs can specify the access privileges afforded to specific users, any local user, users
in specific named security groups, users from a specific cell, users from any external
cell, any authenticated user, and non-authenticated users.

6. Initial ACLs: In addition to specifying ACLs for files and directories, DCE also allows

a separate set of “Initial ACLs” to be attached to a directory. These specify the ACLs
that will be applied to any new file created within the directory. In addition, “Initial
Container ACLs” can be specified to identify the ACLs for any new directories.
Among other things, these can be used to allow users to create new files and
directories without allowing them to subvert the ACLs on the directory (e.g., granting
public access to files in a sensitive directory).

7. Delegation: DFS also supports delegation of DCE credentials, which can be used to

protect not only who can access a file, but also specify the means of access. For
example, ACLs can permit user john to access the GEOLOC file through the
GEOLOC server but prevent john from accessing the file without using the server,
and can prevent another user from accessing the file even if they use the GEOLOC
server.

8. Administration: DFS supports advanced administrative functions such as hot backup,

moving live filesets between machines, quota controls, transactional file system,
dynamic re-sizing of file systems and the ability to control groups of files in filesets
rather than in file system units.

Distributed File System

DII COE I&RTS: Rev 3.0 July 1997 8-35

9. Location independence/consistency of naming: All DFS files are accessed by
consistent names that do not contain any location information. For GCCS, a file could
be in any of the global cell file servers, or replicated in multiple servers. Although
GCCS will use a single DFS cell, in general DFS uses CDS to access file systems that
can easily span cell boundaries. Every client system has the same file system view
regardless of the cell to which they belong.

10. Wide-area access: DFS is built on top of DCE RPC that can use TCP, UDP or other

protocols. Because of its efficiency, circuits of 56Kbps are adequate to provide wide-
area access to DFS servers.

8.4.1 DFS Structure

In general, the DFS file system is a hierarchical structure starting at the /... CDS
directory. Files in any cell can be addressed just by referencing the DFS filename. The
structure of a DFS filename is /.../cellname/fs/filesystem. An example of a
system’s DFS directory is /.../gccs.smil.mil/fs/usr/JOPES. The logical
naming of files does not require that the files reside in a specific server. The physical
representation may have files in another location or perhaps replicated across several file
servers. As a convenience, a symbolic link /:/ is made to represent the files within the
current cell.

Note: In GCCS 3.0, it is anticipated that there will only be a single
global cell containing the DFS file space.

One of the primary purposes of DFS is controlled sharing of information. In the C3I
environment, information sharing occurs in at least three different dimensions: within an
organizational structure (e.g., across a single service or agency); within the unified
command structure (e.g., among a CINC, JTF, and supporting commands); and within
functional groups (e.g., among operations watchteams at all sites). All of these can be
done using DCE security groups. Group ACLs may be attached to any file within a file
structure, but it is most easily understood and administered if the sharing requirements are
explicit in the structure. For the GCCS DFS, the file system is organized around these
sharing dimensions.

8.4.2 DFS Guidance

DFS should be used for files that meet one of more of the following criteria:

1. Files that are read-mostly (i.e., are read many more times than they are written).
2. Files that require high availability.

· For files that change frequently, there is a tradeoff between currency and the overhead
of replication. Changes to non-replicated files are visible immediately, while changes to
a replicated file may not be visible for a period of time. The replication update rate can

Distributed File System

July 1997 DII COE I&RTS: Rev 3.08-36

be set by fileset, but a long interval between replication can increase the chances of
accessing a stale copy.

· Files that are site-specific must be placed in site-specific directories in DFS. Be
cautious when mapping an application data directory into a shared data directory if the
application has any hard-coded file names. It is possible for one site to write the file
and unintentionally change the values for all sites.

· For GCCS, DFS files will initially be mapped into the local NFS file system on

/GCCS. All client machines will mount /... from the NFS-to-DFS gateway
machine. /GCCS will be a symbolic link to /.../gccs.smil/fs.

· If application-specific directories are used in DFS, the segment installation procedures

shall create the directories. Note that the full directory names are site-specific.

· Use symbolic links to map DFS files or directories into the proper place in the local file

system. All mapping shall be done at a directory level. System developers are also
responsible for constructing symbolic links from the local file system to the global DFS
in their installation procedures.

· Do not create a symbolic link from /.:/gccs.smil.mil/fs/ to /:/, and do

not use the notation /:/ within DFS references. This notation refers to the DFS
within the current cell. Since all GCCS applications operate outside the global cell, this
would create an ambiguous reference if the site implements DFS internally in the
future.

· Do not place RDBMS databases into DFS. The DFS file consistency and caching

methods do not support the level of sharing required by an RDBMS. It is possible to
back up databases into DFS for re-loading somewhere else.

· GCCS application servers, or even clients, may become DFS clients and access the

global cell directly. Bypassing the NFS-to-DFS gateway may result in better
performance due to local caching and better consistency semantics through avoiding
NFS.

8.4.3 Potential Uses for DFS

Global DFS cells can be used in a variety of ways to assist operators and developers,
including the following:

1. Data distribution: Many sites are using ftp as a means of obtaining remote files. The
transparency of NFS or DFS is much more powerful than ftp. NFS is not well suited
for wide-area access and has serious security issues when used across sites. The
originator can simply write the data into DFS using any software, and the user can

Distributed File System

DII COE I&RTS: Rev 3.0 July 1997 8-37

immediately read it using the appropriate application. If the originator changes the file,
the other users can almost immediately see the change.

2. Reference files: Applications frequently use reference files for maintaining information

such as maps, inventory, or flat-file databases. These files are updated by a few sites
and are made available to other sites using primitive distribution techniques. DFS also
has the ability to use ‘cloning’ whereby a virtual copy of a file is kept, but with a
fraction of the storage costs. Using this feature, the global file system could make
available old and new copies trivially.

3. Secure files: Files containing security sensitive information should not be kept in NFS

file systems. DFS is a secure alternative to NFS. Using DFS, files can be distributed
and controlled at whatever degree is necessary.

4. Mobile Personnel: Operators who travel regularly to remote sites are probably using

non-secure means (i.e., telnet) to access files such as e-mail, data files (phone lists)
or documents. Both telnet and ftp can provide access control, but in both cases
the user's password is sent unencrypted across the network. DCE provides more
flexible security and the password is never exposed on the network. By storing these
files in DFS, they can be securely accessed remotely.

5. DCE configuration information: Information about site configuration such as its DCE

configuration can easily be stored in DFS. Cell backups (critical DCE databases and
configuration files) can be done remotely by writing into a global file system.

Migration Recommendations

July 1997 DII COE I&RTS: Rev 3.08-38

8.5 Migration Recommendations

Applications must be programmed to use DCE before the application can fully benefit
from the power of DCE. It is assumed that the movement to DCE among applications will
be gradual. Although not all applications will be re-engineered to use DCE RPCs
immediately, they can still take advantage of other DCE services using techniques
described in this section.

The next subsections describe four scenarios and identify ways in which DCE services can
be used in each case. The example cases are not mutually exclusive in that an application
may take advantage of several of them. The first two cases are specifically targeted at
legacy applications, while the last two may be used by legacy or newly developed
distributed applications.

8.5.1 Case1: Application Startup

A typical application startup scenario in the DII starts with the client workstation
displaying a user desktop. The user selects an icon or menu entry, which causes a “button
script” to be executed to start a DII application. The application may be local or remote.
The desktop ensures that the user is authorized to select the icon or menu item. In the case
of an application on a remote application server, the script uses a UNIX command such as
rsh or rexec to start the remote server. The server application then opens a window on
the client workstation and begins a dialog with the user.

The rsh command requires a level of mutual trust between the application server and the
client. It is possible for malicious clients to masquerade as authorized users and run
applications for which they are not authorized. This is particularly a problem for legacy
applications that run under a distinguished uid, such as JOPES (i.e., not the user’s id). Use
of a simple DCE wrapper can ensure the user is authorized using strong DCE protection.

Through the use of a transparent DCE wrapper, the startup of DII applications can be
fully protected using strong DCE authentication and access controls. Instead of invoking a
user application, a button-script will invoke the wrapper and pass the name of the user
application and any parameters. The wrapper will verify that the user is authorized to use
the application, then launch the application. The application receives control just as if the
script had launched it directly, so no application changes are required. In addition to
performing authentication, the wrapper can audit execution of applications.

The wrapper can be used to launch applications on the client machine or on a remote
machine. In the case of a remote application, the wrapper will operate much like the
UNIX rexec or rsh, but will use authenticated DCE RPC to communicate to a remote
wrapper server and will use the DCE ACL model. The remote wrapper will authenticate
the user, verify that the user is authorized, then set up the application environment before
launching the application. Unlike rexec or rsh, the button script does not need to
specify the machine that contains the application. By proper use of the CDS binding

Migration Recommendations

DII COE I&RTS: Rev 3.0 July 1997 8-39

information, the wrapper can make a request such as “connect me to a wrapper server on
a machine that has the JOPES application.”

The wrapper approach has the advantage of allowing full security over execution of DII
applications without having to make changes to any applications.

· This temporary approach is permissible only as an interim step for legacy applications
as they migrate to DCE. New distributed applications shall be designed as two and
three-tier client/server applications making use of RPC. New COE-component
segments shall not use this approach without prior approval of the DII COE Chief
Engineer. Mission-application developers shall not use this approach without prior
approval from the cognizant DOD Chief Engineer.

8.5.2 Case 2: Socket/ONC RPC

Some applications are distributed and use sockets or unsecured ONC RPC to exchange
control and data. Some socket applications perform highly sensitive operations, but
essentially accept any request presented to the designated endpoint. Even without
converting to full DCE RPC, these applications can make use of strong DCE
authentication and access control. Socket-based communication is also susceptible to
packet insertion attacks.

Existing applications that use sockets or RPC and desire greater security should seriously
consider migrating to use of DCE RPC. In many cases the effort to convert to
authenticated DCE RPC is not great. However, even if only limited application changes
can be made, the use of DCE security is possible using the new GSSAPI. With the
GSSAPI, the client application obtains a user credential, which is passed to the server
application. The server verifies the user credential through another call to the GSSAPI.

The simplest use of the GSSAPI will get the credential once and pass it only in the first
message. This provides some measure of security, but not as much as passing the
credential in every interchange. However the latter requires more widespread changes to
the application. It also requires the application to periodically refresh the credential before
it expires.

The following sequence of calls illustrates the use of GSSAPI:

1. Client calls gss_init_sec_context to obtain a security token to pass to the
server.

2. Client passes token to the server across the revised socket or RPC.

3. Server receives token and calls gss_accept_sec_context to decode the token,

then gets a copy of the session key.

Migration Recommendations

July 1997 DII COE I&RTS: Rev 3.08-40

If the credential is valid, the server can convert the token (session key) to a DCE
client/server, which is used as the subject in the access control decision; otherwise, it
rejects the request. The use of GSSAPI is discussed further in subsection 8.3.5.7, Security.

· This temporary approach is permissible only as an interim step for legacy applications
as they migrate to DCE. New COE-component segments shall not use this approach
without prior approval of the DII COE Chief Engineer. Mission-application developers
shall not use this approach without prior approval from the cognizant DOD Chief
Engineer.

8.5.3 Case 3: Distributed Databases

Perhaps the greatest potential use of distributed computing in the DII is for distributed
databases, using products such as Oracle SQL*NET. This provides some security, but
requires duplicate identification of people and resources, increasing administration. It is
possible to integrate database security and remote access control with DCE security using
COTS.

At least two COTS alternatives have potential for providing DCE security to remote
database connections currently using Oracle SQL*NET. The first is to use the SQL*NET
DCE product as provided by Oracle. This product provides an Oracle integration of CDS
and Security into existing applications and servers. The Oracle database uses the client’s
DCE credentials for access decisions, alleviating the need for a separate Oracle login. The
product also maps DCE groups to database roles, unifying another aspect of security. The
ability to map a DCE security group membership into an Oracle role will not be available
until the next release. Database servers register in CDS and clients use CDS to locate a
database server. Unfortunately, this product is not currently available for all COE
platforms.

A second approach is to use Open Horizon’s Connection product as a means of
integrating existing Oracle database clients and servers. It uses essentially the same
approach as SQL*NET DCE, and product availability is immediate. It supports
applications using OCI. In addition, this product supports the de facto standard Open
Database Connectivity (ODBC) remote database connection protocol, allowing access to
a large number of other databases and products. Its major disadvantage is that it cannot
provide DCE group to Oracle role mapping. It requires that privileged database access be
granted to the Connection server. It cannot currently be used with applications that use
ProC or ProAda embedded SQL, since these use undocumented interfaces, instead of
standard OCI.

Note: There are no facilities to directly support either approach in the
DII COE. Tools such as Connection are under consideration for
later COE releases. Developers may make use of these tools with
the COE if required. This subsection is provided only to describe
a potential migration approach.

Migration Recommendations

DII COE I&RTS: Rev 3.0 July 1997 8-41

8.5.4 Case 4: Distributed Files

Perhaps the easiest way to use the security features of DCE is through use of DFS. For
example, the GCCS Global DFS will allow the use of DCE access control, authentication,
replication, and consistency controls, with little or no application impact. It reduces
requirements for user-initiated FTP and polling.

DFS offers some unique characteristics as a remote file service product. Some of these
capabilities are often replicated by individual applications. Using DFS would be a
significant benefit to applications that need to provide coherent file access to a very large
community. DFS also provides a built-in replication mechanism that can be used for
software distribution. It is fully integrated within DCE and uses secure DCE-RPC as well
as DCE’s fine-grained access control mechanisms. GCCS will use DFS to allow all GCCS
sites to have access to a single logical file space. In later versions of GCCS, this access
will be provided by an NFS-to-DFS gateway machine located in each of the theaters.

The DFS provides a transparent, secure global file system. DFS has enormous potential
for sharing files within and between sites. DFS will be installed to support GCCS within a
global cell that has machines at four sites world-wide (DISA, TRANSCOM, EUCOM,
and PACOM). This cell will provide secure, global visibility to current information using
automatic replication. All GCCS sites will share files by access to a file server within this
cell. Initially, DFS will be used for a limited number of files, but the usage will grow as
experience is gained.

· Developers planning to use DFS or anticipating a need for DFS for COE-component
segments shall contact the DII COE Chief Engineer for more detailed information and
guidance. Mission-application developers shall contact the cognizant DOD Chief
Engineer to ensure that such usage does not interfere with the COE, or with other
COE-based systems.

Migration Recommendations

July 1997 DII COE I&RTS: Rev 3.08-42

This page is intentionally blank.

Development Environment

DII COE I&RTS: Rev 3.0 July 1997 9-1

9. Development Environment

The DII COE imposes very few requirements on the process or tools developers use to
design and implement software. The COE concentrates on the end product and how it will
integrate in with the overall system. This approach provides the flexibility to allow
developers to conform to their internal development process requirements. However,
developers are expected to use good software engineering practices and development
tools to ensure robust products. The purpose of this chapter is to suggest certain
development practices that will reduce integration problems, and the impact of one
segment on another.

Developers may select compilers, debuggers, linkers, editors, Computer-Aided Systems
Engineering (CASE) tools, etc. that are most suitable for their development environment.
The compilers and linkers selected must be compatible with the products supplied by the
hardware vendors and must not require any special products for other developers to
acquire in order to use the segments produced.

Coding Conventions

July 1997 DII COE I&RTS: Rev 3.09-2

9.1 Coding Conventions

This section describes required coding standards for segments submitted to DISA,
whether they are COE-component segments or mission-application segments that are part
of a DISA COE-based system. These standards are not intended to restrict software
development, and for that reason the requirements given are brief.

There are two important points to keep in mind with respect to this chapter. First, the DII
COE states requirements for the purpose of ensuring and preserving the integrity of the
runtime environment. Therefore, the DII COE is mostly concerned with executables that
are produced and not the process used to create them. The COE relies upon other
standards (e.g., MIL-STD 2167A, MIL-STD 495, ISO 9000) and practices levied by the
cognizant DOD program managers to ensure good programming practices and a quality
product. However, certain standards are required because some of the segments produced
contain APIs that developers will use to build other segments upon.

Secondly, the DII COE is neutral with respect to programming languages and does not
stipulate what programming language to use to write segments. Such decisions are the
prerogative of the cognizant DOD program manager. The COE must support segments
written in Ada, in support of DOD policy, and C, because of the use of COTS products,
and therefore both are addressed in this chapter. Any statements in this chapter, or
elsewhere in the I&RTS, which appear to state a preference for one language over another
are unintentional.

Because most developers are using either C/C++ or Ada, COE-component segments that
provide APIs shall be written in either C/C++ or Ada. Availability of APIs for both C and
Ada is highly desirable, but will be driven by service and agency requirements. Consult the
DII COE Chief Engineer for availability of multi-language APIs, for requirements to
produce multi-language APIs for a particular segment, or for support for languages other
than C/C++ and Ada.

9.1.1 Language-Independent Conventions

The following suggestions and requirements are language independent.

· Code delivered to DISA shall not be compiled with debug options enabled. If
available, a utility such as the UNIX strip command shall be run on executables to
minimize the disk space required.

· Segments should use shared libraries where practical to reduce runtime memory

requirements. Segments with public APIs implemented as shared libraries shall also be
delivered as static libraries to make debugging easier for developers who need to use
the APIs.

· Developers may use GUI tools to build interfaces, but developer’s should select tools

that are portable across platforms. Segments built with such tools shall use resource
files for window behavior rather than embedded code, and must not require any

Coding Conventions

DII COE I&RTS: Rev 3.0 July 1997 9-3

runtime licenses unless approved by the DII COE Chief Engineer for COE segments or
by the cognizant DOD program manager for application segments.

· Developers should run all modules through a tool such as lint to detect potential

coding errors prior to compiling.

· Developers should run all modules through commercially available tools to detect as

many runtime errors as possible (e.g., “memory leaks”).

· Developers should periodically profile segments by using tools that do a runtime

analysis of module performance (% CPU utilization, number of times a function is
invoked, amount of time spent in a function, LAN loading analysis, etc.).

· Developers should create a test suite for automatically exercising the segment,

especially inter-segment interfaces and APIs, and periodically run the tests to perform
regression testing. A formal test plan should be created and submitted with the
segment.

· Segments with public APIs shall be delivered with a test suite that covers all public

APIs provided by the segment.

· Developers should use a tool such as imake for generating makefiles that are as

portable as possible. If available, the POSIX.2 make utility should be used.

· Developers should use automated tools such as CVS, RCS, or other commercially

available products to perform configuration management tasks. Segment developers
are responsible for configuration control of their own products. The I&RTS does not
prescribe a CM plan, but assumes the developer has one as part of good programming
practices.

· Developers should periodically rebuild segments from scratch to ensure that all pieces,

including data files, are under proper configuration management control.

· Developers should track problem reports in an automated database. This will simplify
reporting known problems when the segment is submitted to the cognizant DOD SSA.

· Developers shall separate COTS products from mission-application software because
the COTS software may already be available in the DII COE inventory.

9.1.2 Ada

Ada generally requires stipulating fewer requirements than other languages because the
syntax and semantics of the language are designed to enforce good programming practices
at the compiler level. For example, Ada enforces strong typing so that many common
coding errors are caught at compile time.

Coding Conventions

July 1997 DII COE I&RTS: Rev 3.09-4

Ada bindings in particular pose specific areas of concern.

· Developers should design software so that routines that require binding to other
languages are isolated into a small number of easily separated modules. This will make
maintenance of Ada bindings easier, and make it easier to identify segments that
require long-term support for Ada bindings.

· Developers who create Ada bindings to other segments or COTS products within the

COE should submit them with their segment so that other developers may reuse them.

· Developers who require Ada bindings to COTS products within the COE (e.g., Motif,

DCE) should use commercially available bindings whenever they exist, and whenever
it is economically feasible to do so. Products are available which largely automate the
process of creating Ada bindings from C header files.

· Developers shall separate submission of their segment and any bindings they create.

The segment will be delivered to operational sites while the bindings will be distributed
only to other developers.

· Developers should use Ada95 as the language of choice over earlier versions of Ada.

9.1.3 C/C++

This subsection contains requirements and suggestions that are specific to programming in
C or C++.

· Developers should use American National Standards Institute (ANSI) C instead of
Kernighan and Ritchie C because of the strong typing capabilities of ANSI C.

· Segments that have public APIs written in C shall support ANSI C function
prototypes.

· Segments that have public APIs shall support linking with C++ modules. This is done
by bracketing function definitions with

#ifdef __cplusplus
extern "C" {
#endif

function prototypes

#ifdef _cplusplus
}
#endif

Coding Conventions

DII COE I&RTS: Rev 3.0 July 1997 9-5

· Segments written in C that have public APIs shall handle the condition where a header
file is included twice. This is accomplished by bracketing the header file with
#ifndef and #endif as follows:

#ifndef MYHEADER
#define MYHEADER

header file declarations

#endif

Development Directory Structure

July 1997 DII COE I&RTS: Rev 3.09-6

9.2 Development Directory Structure

Developers may use whatever directory structure is most appropriate for their
development process. The installation tools will enforce the logical structure presented in
Chapter 5. However, the COE development tools allow segments under development to
be located arbitrarily on the disk. For example,

VerifySeg -p /home5/test/dev MySeg

indicates that the segment to be validated, MySeg, is located in the directory
/home5/test/dev. Similarly,

TestInstall -p /home5/test/dev MySeg

allows the segment to be temporarily installed from this directory for testing and
debugging.

Figure 9-1 shows an example segment directory structure. It has the advantage that it
separates public and private code into different subdirectories. MySeg/lib contains
public libraries provided by the segment, while MySeg/include contains public header
(C/C++) or package definition (Ada) files The src/PrivLib subdirectory should
contain library modules that are private to the segment. Similarly, the subdirectory
src/PrivInclude contains interface files that are private to the segment.

PrivInclude PrivLib ...

MySeg

Scripts SegDescrip data bin src include lib

Figure 9-1: Example Development Directory Structure

This directory structure is not mandatory, except when source code is delivered to DISA;
otherwise, it represents only one recommended approach. When source code is delivered
to DISA, is shall be in the src, include, and lib directories as appropriate.

Development Directory Structure

DII COE I&RTS: Rev 3.0 July 1997 9-7

An advantage of structuring directories as shown in Figure 9-1 is that delivering software
to other developers means that only one directory must be deleted: the src directory.
Delivering the software to an operational site means that only three directories need to be
deleted: include, lib (unless shared libraries are being used), and src. It is a simple
matter to create automated scripts that can generate tapes for both types of deliveries. An
additional benefit is that public and private files are separated in the directory structure for
easier management and distribution.

Separating Out the Development Environment

July 1997 DII COE I&RTS: Rev 3.09-8

9.3 Separating Out the Development Environment

The COE requires that a strict separation be maintained between the runtime environment
and the development environment. This is true regardless of the target platform operating
system (e.g., NT, UNIX). For the NT1 world, most development tools are structured in
such a way that the development environment is self-contained in an integrated
environment that is accessible from a GUI. For example, both Microsoft and Borland
provide an integrated development environment for C++ that provides icon and menu
access to compilers, linkers, editors, and other development tools. Both products provide
a “directory browser” for identifying the location of source code and libraries, and the
target directory for object code and executables. Moreover, they provide an interface for
defining parameters such as compiler flags and preserve the settings and all other build-
related information in a “project file.”

For UNIX, however, integrated development environments are less common place. The
next subsection describes an approach for preserving the separation of development and
runtime UNIX environments through the use of scripts. The concept is to put all runtime
information into one script, and all development information in a separate script. While the
approach between NT and UNIX is considerably different, the COE stipulates a
fundamental requirement to preserve a separation between the runtime and development
environment. Developers shall preserve this separation regardless of the target operating
system environment.

9.3.1 UNIX Development Scripts

In the UNIX environment, it is often convenient to locate development scripts in the same
subdirectory as the runtime scripts (e.g., subdirectory Scripts). The recommended
convention is to name development scripts with a .dev extension to distinguish them
from runtime environment scripts. The .runtime extension can not be used since this
has a special meaning within the COE as explained in Chapter 5.

Developers may define environment variables for locating source code directories,
compilers, tools, and libraries. In addition, aliases can be defined as shortcuts for
frequently executed commands. None of these examples are allowed in the runtime
environment and hence must be placed in a development script such as .cshrc.dev.

9.3.2 NT2 and UNIX Recommendations

The following suggestions are made:

1 The DII COE for NT is presently available only on PC platforms. Comments in this chapter should be
understood in the context of Windows NT for PC-based platforms, even though the NT operating system
is available on other commercial platforms. DII COE support for non-PC platforms is dependent upon
requirements from the DII COE community.
2 ibid.

Separating Out the Development Environment

DII COE I&RTS: Rev 3.0 July 1997 9-9

· Define environment variables relative to segprefix_HOME where segprefix is the
segment prefix. This allows segments to be easily relocated on the disk. (This
suggestion is applicable to both UNIX and NT.)

· Use environment variables to define where to place libraries and executables. (UNIX

only. For NT, use facilities provided by the development tools for locating libraries
and executables.)

· Extend the path environment variable through concatenation - that is

set path = ($path $TOOLS)

where $TOOLS is the location of the COE development tools (e.g., /h/TOOLS).
(UNIX only. For NT, use facilities provided by the development tools for locating
tools.)

· Use the same script for all supported platforms through use of the environment
variables MACHINE_CPU and MACHINE_OS. (UNIX only. For NT, use facilities
provided by the development tools for creating project files that allow multi-platform
development support.)

9.3.3 Test Account Group

COE-component segment developers typically create servers that will be used by other
segments in the operational system. However, the developers and the SSA need to be able
to test the COE-component segments when there may not be available any mission-
application segments, or even an account group segment, that will launch the servers and
exercise the API interfaces.

To aid the SSA and other segment developers, it is recommended that COE-component
segment developers create and deliver with the segment the following:

· A test account group segment. This segment should establish the environment that
the COE segment is expected to run within and contain details for how to correctly
launch the services. This provides a way for the SSA to test the delivered segments
and it provides system engineers and designers an example of how the segment was
intended to be used.

· A “Run” script. Chapter 5 indicates that account group segments must contain an

executable that will launch the application. The test segment should also contain such
an executable. This encapsulates in one place the information required to properly
establish the runtime environment to launch the server and it also identifies the
sequence and command-line parameters, if any, required to launch the services.

· Documentation. The test segment and “Run” script should be documented to assist

the system integrator, potential system designers, and the SSA.

Separating Out the Development Environment

July 1997 DII COE I&RTS: Rev 3.09-10

The test segment and “Run” script should be packaged and delivered separately from the
actual COE-component segment. This will ensure that the test segment does not
inadvertently get delivered to an operational site, or get confused with account group
segments that are intended to be part of the end system.

Private and Public Files

DII COE I&RTS: Rev 3.0 July 1997 9-11

9.4 Private and Public Files

The software engineering principles of data abstraction and data hiding are important in
designing segments. Data abstraction refers to the process of abstracting structures so
that subscriber segments need not know low-level details of how data is physically
organized. Data hiding refers to hiding data elements that subscriber segments do not
need or are not authorized to access directly. Proper implementation of these two design
principles prevents segments from affecting each other through inadvertent side effects
and isolates one segment from changes in another.

It is also important to hide low-level functions and only provide access to segment
functionality through a carefully controlled interface, the API. It is neither feasible nor
desirable to make all functions in a segment available due to the sheer number of functions
involved and because changing a function that is being used directly by another developer
may have significant impact.

These concepts are implemented in Ada through the package construct. C, however, does
not contain an equivalent capability. The closest approximation in C is the static directive
that makes a function visible only within the scope of the file containing the function
definition. To compensate for structural inadequacies in C, developers must segregate
software into public and private files, and into public and private directories. Since header
files (e.g., .h files) are used to define the interface to C functions, the concept is that
header files should be segregated into public and private files while public and private
directories are used to provide the same concept for libraries. Moreover, segregation into
distinct directories makes it easier to enforce the separation.

Developer’s Toolkit

July 1997 DII COE I&RTS: Rev 3.09-12

9.5 Developer’s Toolkit

The Developer’s Toolkit contains the components necessary for creating segments that
use COE components. The toolkit does not need to be in segment format (it is not
installed at operational sites), but it is a set of files and directories that may be downloaded
electronically from the online library. Developer’s may also contact the DII COE
Configuration Management Department to receive the toolkit on magnetic media in
relative “tar” format.

The Developer’s Toolkit is distributed separately from the target COE-based system.
However, components from the operational system (COE-component segments, shared
libraries, etc.) are required for development. These may be obtained electronically from
the online library, or on magnetic media from the DII COE Configuration Management
Department. Classified or very large components will be distributed to developers via
magnetic media. The toolkit does not duplicate any components available in the runtime
system because this would create configuration management problems in ensuring that
developers do not receive two different versions of the same module.

As distributed, the toolkit contains the following:

· API libraries and object code
· C header files for public APIs written in C
· Ada package definitions for APIs written in Ada
· Ada bindings for selected APIs
· API documentation in HTML format3

· API documentation in UNIX man page format
· COE development tools (see Appendix C)
· Conventions for creating APIs

The toolkit does not contain any products that require a license (compilers, editors,
RDBMS, etc.). It is the developer’s responsibility to acquire these items as needed.

Developers may install the toolkit on the disk in whatever directories are desired. The
standard location for toolkit components is:

C public header files /h/COE/include
Ada public package definitions /h/COE/include
public libraries /h/COE/lib
executables /h/TOOLS/bin
UNIX man pages /h/TOOLS/man
HTML documentation /h/TOOLS/HTML

3 Documentation is delivered in only one format. The goal is to use HTML for programmer documentation
because this is suitable for both NT and UNIX platforms. However, some documentation is still in UNIX
man page format.

Developer’s Toolkit

DII COE I&RTS: Rev 3.0 July 1997 9-13

Certain tools from Appendix C are useful for both the development environment and the
runtime environment. These tools are delivered with the operational system and are
located under /h/COE/bin.

Developers should include /h/TOOLS/bin in the path environment variable for their
development environment. /h/TOOLS/man should also be included in the search path
for UNIX man pages. The web browser should be set to find HTML documentation under
/h/TOOLS/HTML.

Developers are encouraged to submit tools to the COE community for inclusion in the
developer’s toolkit. All tools submitted must be license and royalty free, and must include
a man page for online documentation. Developers wishing to release source code for their
contributed tools may do so and the source code for the tool will be organized under the
/h/TOOLS/src directory.

Developer’s Toolkit

July 1997 DII COE I&RTS: Rev 3.09-14

This page is intentionally blank.

COE Online Services

DII COE I&RTS: Rev 3.0 July 1997 10-1

10. COE Online Services

The DII COE provides a comprehensive set of services to assist in

· creating segments,
· tracking and managing submitted segments,
· tracking system trouble reports,
· distributing technical information and documents,
· communicating project-related information,
· distributing COE products to segment developers, and
· distributing COE-based systems to operational sites.

These services are provided by an SDMS and a COE Information Server (CINFO). The
SDMS is an online software repository for receiving submitted segments, and for
distributing them electronically, and for synchronizing repositories at mirror sites. The
CINFO is used to disseminate project-related information including schedules and
documentation. With appropriate restrictions, SDMS and CINFO services are available to
segment developers, program managers, site administrators, services and agencies, and
program sponsors.

Several network technologies are used to implement COE online services.

World-Wide-Web (WWW) Access to catalogs, segments, plans, documents, etc.
is provided via a WWW server. It is the standard
interface to both SDMS and CINFO. Users will
require a Hypertext Markup Language (HTML)
browser such as Mosaic, Netscape, or Microsoft’s
Internet Explorer to access the WWW server.

Internet News An Internet news server is used to manage
newsgroups about the COE and COE-based
systems. Such groups include technical discussions
related to COE architecture, available tools, and
standards.

anonymous ftp Anonymous ftp servers are used to provide rapid
dissemination of segments to operational sites. Sites
may receive segments in either a “push” or a “pull”
mode.

electronic mail Automatic notification of key events (segment in
test, segment ready for distribution, etc.) trouble
reports, and meeting notices is done via electronic
mail.

COE Online Services

10-2 July 1997 DII COE I&RTS: Rev 3.0

This approach provides several benefits to COE-based systems:

· Facilitates software and data reuse (e.g., segment reuse)

· Identifies available segments through a segment catalog

· Provides online configuration management

· Automates several aspects of the integration process

· Provides electronic notification of segment status to management

· Improves communications between segment developers

· Provides a centralized electronic distribution facility

· Separates classified or sensitive information from information suitable for general

dissemination

Appendix D provides more information on how to access the COE online services
described in this chapter.

Security Features

DII COE I&RTS: Rev 3.0 July 1997 10-3

10.1 Security Features

COE online services are separated into a classified and an unclassified system. The
systems, whether classified or unclassified, use a secure operating system, database, and
network software. Auditing is enabled to record system access and to record other
security-relevant operations. Additional security features are implemented to

· ensure software integrity,
· prevent interception or eavesdropping on data transmissions, and
· ensure separation of classified versus unclassified information, segments, and data.

The classified and unclassified components reside on physically distinct computer systems
separated by an air gap. The unclassified system is available via Internet and is generally
available to any interested party. The classified system is accessible only via SIPRNET,
and only to authorized users.

Unauthorized access to the system is prevented through a layered approach. Firewalls are
implemented as the first layer of protection. Secure routers provide IP address filtering
and port access to limit access only to authorized platforms. Features are also
implemented to restrict services that can be requested or granted to further protect the
system from unauthorized access.

User authentication is based on a combination of a manual registration process, an
authorized IP address, and password protection. Passwords are required to initially log
onto the system, but are further required to log into the software repository and to access
browser services.

Public key encryption is used to protect segments in the software repository. Encryption
and compression are both used to protect data during transmission over the network to
prevent unauthorized modifications.

Certain information, such as system problem reports or project status, is not necessarily
classified. However, such information is still sensitive and needs to be controlled. Public
and private views are implemented to provide this measure of protection.

Further discussion of security features is beyond the scope of this document.

Software Distribution Management System

10-4 July 1997 DII COE I&RTS: Rev 3.0

10.2 Software Distribution Management System

SDMS is the DII software repository, and it is used to store and disseminate COE and
COE-related products. SDMS is accessible only from SIPRNET. Segments, technical
documentation, APIs, the COE developer’s toolkit, and segment abstracts are also stored
in the repository, but as appropriate, they are mirrored on the unclassified Internet set for
access by the general community.

Segments can be sent electronically to the DISA OSF through the submit program.
Segments may also be sent to the OSF via tape. Tape is necessary to accommodate large
segments (such as database segments) or classified segments. Electronically transmitted
segments are compressed to reduce transmission time, and encrypted to provide security.
Online software at the OSF receives the segment and places it into a protected directory
until it is tested for conformance and to ensure that it is an authorized segment. Only then
is the segment actually checked into the SDMS. This process is described in more detail in
Chapter 3.

Segments are retrieved from the SDMS in a similar way. As segments are approved for
release, they are placed in a protected directory that is accessible via an anonymous ftp, or
through a network browser.

Developers who desire SDMS access must request access from DISA through their
appropriate government program sponsor. Those without SIPRNET access may request
COE products, such as the developer’s toolkit, on tape media.

Distribution of COE-based systems to operational sites also uses the SDMS. Site
administrators must request access from DISA through their appropriate government
channels.

COE Information Server

DII COE I&RTS: Rev 3.0 July 1997 10-5

10.3 COE Information Server

The COE information server is used to disseminate information to the at-large COE
community. The information server provides the following types of information:

· general product information
· meeting minutes
· briefings
· segment descriptions
· user documentation
· programmatic documentation
· problem reports.

An unclassified WWW home page available via the Internet provides access only to non-
sensitive general information from these categories. The classified WWW home page is
available only on SIPRNET and includes a list of all available segments, segment version
and patch information, information on upcoming system changes, and special installation
instructions.

All information posted on the information server requires prior approval by the DISA
Engineering Office. Information to be posted must be submitted to the engineering office
by the appropriate service/agency representative.

Mirror Sites

10-6 July 1997 DII COE I&RTS: Rev 3.0

10.4 Mirror Sites

Project managers for COE-based systems will often have their own SSA and procedures
for configuration management, development, and project communication. Services and
government agencies may wish to implement the COE online services at their own
selected sites to more directly support their program. Such SSA sites are called mirror
sites. A mirror site contains a copy of the SDMS that is updated on a periodic basis (e.g.,
daily, weekly).

Mirror sites have all of the same capabilities as the central DISA site, subject to three
restrictions:

1. Mirror sites are not allowed to submit COE-component segments to a mirror site
SDMS. This ensures centralized configuration management of the COE through the
DII COE SSA.

2. Mission-area segments that are part of a COE-based system being developed in

cooperation with DISA (e.g., GCCS, GCSS) may be provisionally submitted to a
mirror site SDMS.

3. Segments with APIs for which a mirror site is responsible may be provisionally

submitted to the mirror site SDMS.

Submission of COE-component segments or mission-application segments for DISA
COE-based systems is considered provisional until formally accepted by the DII COE
SSA. These restrictions are required in order to avoid configuration management
problems.

